

REDESIGNATION REQUEST AND MAINTENANCE PLAN FOR THE COLUMBUS ANNUAL PM_{2.5} NONATTAINMENT AREA

Coshocton, Delaware, Fairfield, Franklin, and Licking Counties, Ohio

Prepared by:
Ohio Environmental Protection Agency
Division of Air Pollution Control

May 2011

This page left intentionally blank

TABLE OF CONTENTS

Chapter One Introduction	1
Geographical description and background	
Status of air quality	3
Chapter Two	
Requirements for redesignation	4
Chapter Three	
PM _{2.5} monitoring	8
Annual PM _{2.5} NAAQS	
Ambient data quality assured	9
Three complete years of data	
Commitment to continue monitoring	12
Chapter Four	
Emission inventory	13
Base year inventory	
Emission projections	
Demonstration of maintenance	21
Permanent and enforceable emissions reductions	
Provisions for future update	33
Chapter Five	
Control measures and regulations	35
Marginal nonattainment areas to implement RACM and RACT	
Show Reasonable Further Progress (RFP)	
Emission inventories	
Implementation of past SIP revisions	
New source review provisions	40
Assurance of continued controls	40
Chapter Six	
Contingency measures	/11
Commitment to revise plan	
Commitment to revise plan	
Potential contingency measures	
List of PM _{2.5} , SO ₂ , and NO _x sources	
Chanter Cover	
Chapter Seven	11
Chapter Seven Public participation	44

FIGURES

Figure 1	Map of the Columbus nonattainment area and monitor locations	
Figure 2	PM _{2.5} Annual Mean Trends LADCO States	11
Figure 3	PM _{2.5} Annual Mean Trends Midwest States	
Figure 4	PM _{2.5} Annual Mean National Trends	12
	TABLES	
Table 1	Monitoring Data for Columbus area for 2008 - 2010	10
Table 2	Coshocton County, Emission Estimations for On-road Mobile Sources	
Table 3	Delaware County, Emission Estimations for On-road Mobile Sources	
Table 4	Fairfield County, Emission Estimations for On-road Mobile Sources	
Table 5	Franklin County, Emission Estimations for On-road Mobile Sources	19
Table 6	Licking County, Emission Estimations for On-road Mobile Sources	19
Table 7	Emissions Estimations Totals for On-road Mobile Sources for the	
	Columbus Area	19
Table 8	Mobile Vehicle Emission Budget	20
Table 9	Reductions in SO ₂ and NO _x EGU Emissions Between 2008 and 2009	
Table 10	Reductions in SO_2 and NO_x EGU Emissions Between the First Half of 2008	20
Table 10	and 2010	24
Table 11	Coshocton County, PM _{2.5} Emission Inventory Totals for Base Year 2005,	
	Estimated 2008, and Projected 2015 and 2022 (tpy) – Without CAIR	25
Table 12	Delaware County, PM _{2.5} Emission Inventory Totals for Base Year 2005,	
	Estimated 2008, and Projected 2015 and 2022 (tpy) – Without CAIR	26
Table 13	Fairfield County, PM _{2.5} Emission Inventory Totals for Base Year 2005,	
	Estimated 2008, and Projected 2015 and 2022 (tpy) – Without CAIR	26
Table 14	Franklin County, PM _{2.5} Emission Inventory Totals for Base Year 2005,	
T 11 45	Estimated 2008, and Projected 2015 and 2022 (tpy) – Without CAIR	26
Table 15	Licking County, PM _{2.5} Emission Inventory Totals for Base Year 2005,	27
Table 16	Estimated 2008, and Projected 2015 and 2022 (tpy) – Without CAIR	21
Table 16	Columbus Area PM _{2.5} Emission Inventory Totals for Base Year 2005, Estimated 2008, and Projected 2015 and 2022 (tpy) – Without CAIR	27
Table 17	Coshocton County, NO _x Emission Inventory Totals for Base Year 2005,	∠1
Table 17	Estimated 2008, and Projected 2015 and 2022 (tpy) – With CAIR	27
Table 18	Delaware County, NO _x Emission Inventory Totals for Base Year 2005,	21
14515 15	Estimated 2008, and Projected 2015 and 2022 (tpy) – With CAIR	28
Table 19	Fairfield County, NO _x Emission Inventory Totals for Base Year 2005,	0
	Estimated 2008, and Projected 2015 and 2022 (tpy) – With CAIR	28
Table 20	Franklin County, NO _x Emission Inventory Totals for Base Year 2005,	
	Estimated 2008, and Projected 2015 and 2022 (tpy) – With CAIR	28
Table 21	Licking County, NO _x Emission Inventory Totals for Base Year 2005,	
	Estimated 2008, and Projected 2015 and 2022 (tpy) – With CAIR	29
Table 22	Columbus Area NO _x Emission Inventory Totals for Base Year 2005,	
	Estimated 2008, and Projected 2015 and 2022 (tpy) – With CAIR	29
Table 23	Coshocton County, SO ₂ Emission Inventory Totals for Base Year 2005,	
	Estimated 2008, and Projected 2015 and 2022 (tpy) – With CAIR	29
Table 24	Delaware County, SO ₂ Emission Inventory Totals for Base Year 2005,	

	Estimated 2008, and Projected 2015 and 2022 (tpy) – With CAIR	30
Table 25	Fairfield County, SO ₂ Emission Inventory Totals for Base Year 2005,	
	Estimated 2008, and Projected 2015 and 2022 (tpy) - With CAIR	30
Table 26	Franklin County, SO ₂ Emission Inventory Totals for Base Year 2005,	
	Estimated 2008, and Projected 2015 and 2022 (tpy) - With CAIR	30
Table 27	Licking County, SO ₂ Emission Inventory Totals for Base Year 2005,	
	Estimated 2008, and Projected 2015 and 2022 (tpy) - With CAIR	31
Table 28	Columbus Area SO ₂ Emission Inventory Totals for Base Year 2005,	
	Estimated 2008, and Projected 2015 and 2022 (tpy) - With CAIR	31
Table 29	Columbus Area Comparison of 2008 attainment year and 2015 and 2022	
	projected emission estimates (tpy)	31
Table 30	Columbus Area Combined Comparison of 2005 base year and 2008	
	attainment year on-road and EGU reductions	33

APPENDICES

Δ	Air Quality	/ System	(AOS)	Data
$\overline{}$	All Quality	OVSIGIII	TQ0	Dala

- В
- Ohio 2005 SIP Base Year Inventory Discussion
 Central Ohio On-Road Mobile Emissions Estimates
 LADCO Technical Support Document
 Public Participation Documentation C
- D
- Ε

This page left intentionally blank

REDESIGNATION REQUEST AND MAINTENANCE PLAN FOR THE COLUMBUS ANNUAL PM_{2.5} NONATTAINMENT AREA

Coshocton, Delaware, Fairfield, Franklin and Licking Counties, Ohio

CHAPTER ONE

<u>Introduction</u>

The Clean Air Act (CAA), as amended, requires each State with areas failing to meet the annual National Ambient Air Quality Standards (NAAQS) $PM_{2.5}^{-1}$ to develop State Implementation Plans (SIPs) to expeditiously attain and maintain the standards. The United States Environmental Protection Agency (U.S. EPA) revised the NAAQS for particulate matter in July 1997. It replaced the existing PM_{10} standard with a health-based $PM_{2.5}$ standard and retained the PM_{10} standard as a particulate standard protecting welfare. The standards include an annual standard set at 15.0 micrograms per cubic meter (μ g/m³), based on the 3-year average of annual mean $PM_{2.5}$ concentrations, and a 24-hour standard of 65 μ g/m³, based on the 3-year average of the 98th percentile of 24-hour concentrations.

The revised NAAQS was legally challenged in the U.S. Court of Appeals for the District of Columbia Circuit (the D.C. Circuit). On May 14, 1999, the D.C. Circuit remanded, without vacatur, the standards back to U.S. EPA. The remand did not question the level at which U.S. EPA set the standards but rather the constitutionality of the CAA provision that authorizes U.S. EPA to set national air quality standards. U.S. EPA requested a rehearing which the D.C. Circuit denied. Therefore, in December 1999, U.S. EPA appealed the D.C. Circuit decision to the U.S. Supreme Court. The U.S. Supreme Court issued a decision on February 27, 2001 that unanimously affirmed the constitutionality of the CAA provision but did remand several other issues back to the D.C. Circuit, including the issue of whether U.S. EPA acted arbitrarily and capriciously in establishing the specific levels of the standards.

The D.C. Circuit heard arguments in this remanded case in December 2001, and issued its decision on March 26, 2002. The D.C. Circuit rejected the claims that the U.S. EPA had acted arbitrarily and capriciously in setting the levels of the standards.

On December 17, 2004, U.S. EPA promulgated the initial PM_{2.5} nonattainment areas designations for the PM_{2.5} standards across the country. Modifications to those

¹ Particle pollution is a mixture of microscopic solids and liquid droplets suspended in air. This pollution, also known as particulate matter, is made up of a number of components, including acids (such as nitrates and sulfates), organic chemicals, metals, soil or dust particles, and allergens (such as fragments of pollen or mold spores). Fine particle pollution or PM_{2.5} describes particulate matter that is 2.5 micrometers in diameter and smaller - 1/30th the diameter of a human hair. Fine particle pollution can be emitted directly or formed secondarily in the atmosphere.

designations were made and an effective date was set at April 5, 2005. Unlike Subpart 2 of the CAA Amendments of 1990 which defined five ozone nonattainment classifications for the areas that exceed the NAAQS based on the severity of the ozone levels, $PM_{2.5}$ nonattainment designations are simply labeled "nonattainment." The CAA Amendments require states with $PM_{2.5}$ nonattainment areas to submit a plan within three years of the effective date of the designations (April 5, 2008) detailing how the $PM_{2.5}$ standards will be attained by April 5, 2010. Ohio EPA submitted its attainment demonstration for the entire State of Ohio on July 16, 2008.

Section 107(d)(3)(E) of the CAA allows states to request nonattainment areas to be redesignated to attainment provided certain criteria are met. The following are the criteria that must be met in order for an area to be redesignated from nonattainment to attainment:

- i) A determination that the area has attained the PM_{2.5} standard.
- ii) An approved State Implementation Plan (SIP) for the area under Section 110(k).
- *iii*) A determination that the improvement in air quality is due to permanent and enforceable reductions in emissions resulting from implementation of the SIP and other federal requirements.
- iv) A fully approved maintenance plan under Section 175(A).
- v) A determination that all Section 110 and Part D requirements have been met.

This document addresses each of these requirements, and provides additional information to support continued compliance with the annual $PM_{2.5}$ standard.

Geographical Description and Background

The current Columbus nonattainment area is located in central Ohio and includes the following counties: Coshocton (partial nonattainment of Franklin Township only), Delaware, Fairfield, Franklin and Licking. This area is shown in Figure 1 under Chapter Three.

The Columbus area has not previously been subject to nonattainment area rulemakings for fine particles.

As a result of the 2005 $PM_{2.5}$ designations, U.S. EPA designated the Columbus area nonattainment for the 15.0 μ g/m³ annual standard², and Ohio EPA was required to develop a plan to reduce oxides of nitrogen (NO_x), sulfur dioxide (SO₂) and direct $PM_{2.5}$ emissions and to demonstrate that the area will meet the federal annual air quality standard by April 5, 2010. Ohio's main $PM_{2.5}$ components are primary particles (organic carbon, crustal material, and elemental carbon), SO₂ and NO_x, which were included in the attainment demonstration analysis. Volatile organic compounds (VOCs) and ammonia (NH3) were not included in the analysis since they were not part of Ohio's current attainment strategy for $PM_{2.5}$ (although controls for VOCs have been implemented for ozone nonattainment). This is consistent with U.S. EPA's "Clean Air Particle Implementation Rule" [74FR 20856]

² There were no monitors in Ohio that violated the 1997 24-hour $PM_{2.5}$ standard of 65 $\mu g/m^3$.

(hereafter referred to as "Implementation Rule"). In the Implementation Rule, U.S. EPA presumes NH_3 emissions are not a $PM_{2.5}$ attainment plan precursor and that States are not required to address VOC unless the State or U.S. EPA makes technical demonstration that emissions of VOCs significantly contribute to nonattainment of the annual $PM_{2.5}$ standard.

This document is intended to support Ohio's request that the Columbus area be redesignated from nonattainment to attainment for the annual PM_{2.5} standard.

Status of Air Quality

 $PM_{2.5}$ complete quality-assured ambient air quality monitoring data for the most recent three (3) years, 2008 through 2010, demonstrate that the air quality has met the NAAQS for annual $PM_{2.5}$ in this nonattainment area. The NAAQS attainment, accompanied by decreases in emission levels discussed in Chapter Four, supports a redesignation to attainment for the Columbus area based on the requirements in Section 107(d)(3)(E) of the CAA as amended.

CHAPTER TWO

Requirements for Redesignation

U.S. EPA has published detailed guidance in a document entitled *Procedures for Processing Requests to Redesignate Areas to Attainment* (redesignation guidance), issued September 4, 1992, to Regional Air Directors. The redesignation request and maintenance plan are based on the redesignation guidance, supplemented with additional guidance received from staff of U.S. EPA Region 5.

Below is a summary of each redesignation criterion as it applies to the Columbus area.

i.) Attainment of the standard (CAA Section 107(d)(3)(E)(i))

There are two components involved in making this demonstration. The first component relies on ambient air quality data. The data that are used to demonstrate attainment should be the product of ambient monitoring that is representative of the area of highest concentration. The data should be collected and quality-assured in accordance with 40 CFR 58 and recorded in the Air Quality System (AQS) in order for it to be available to the public for review.

The second component relies upon supplemental U.S. EPA-approved air quality modeling. While no modeling is required for redesignating nonattainment areas, the redesignation guidance states it is "generally necessary" for particulate matter redesignations. Appendix C and Appendix D contains the most recent modeling results showing future attainment and maintenance are provided. Chapter Three discusses this requirement in more detail and provides the attainment demonstration.

ii.) Permanent and enforceable improvement in air quality (CAA Section 107(d)(3)(E)(iii))

The state must be able to reasonably attribute the improvement in air quality to emission reductions which are permanent and enforceable. The state should estimate the percent reduction achieved from federal measures as well as control measures that have been adopted and implemented by the state.

It was not necessary for Ohio to adopt or implement control measures for these counties beyond the federal measures.

Ohio EPA has adopted several rules recently that will have an impact statewide on $PM_{2.5}$ emissions in the future:

- Clean Air Interstate Rule (CAIR)
- NO_x SIP Call Rules

In addition, since the initial designations were made federally enforceable consent decrees have resulted in reductions in emissions from utilities across the state.

Chapters Four and Five discuss this requirement in more detail.

iii.) Section 110 and Part D requirements (CAA Section 107(d)(3)(E)(v)) For purposes of redesignation, a state must meet all requirements of Section 110 and Part D that were applicable prior to submittal of the complete redesignation request.

Subpart 1 of Part D consists of general requirements applicable to all areas which are designated nonattainment based on a violation of the NAAQS. Subpart 4 of Part D consists of more specific requirements applicable to particulate matter (specifically to address PM₁₀). However, for the purpose of implementing the 1997 PM_{2.5} standard, U.S. EPA's Implementation Rule stated Subpart 1, rather than Subpart 4, is appropriate for the purpose of implementing PM_{2.5}.[72 FR 20589]

i.) Section 110(a) requirements

Section 110(a) of Title I of the CAA contains the general requirements for a SIP. Section 110(a)(2) provides that the implementation plan submitted by a state must have been adopted by the state after reasonable public notice and hearing, and that, among other things, it must include enforceable emission limitations and other control measures, means or techniques necessary to meet the requirements of the CAA; provide for establishment and operation of appropriate devices, methods, systems and procedures necessary to monitor ambient air quality; provide for implementation of a source permit program to regulate the modification and construction of any stationary source within the areas covered by the plan; include provisions for the implementation of Part C, prevention of significant deterioration (PSD) and Part D, NSR permit programs; include criteria for stationary source emission control measures, monitoring, and reporting; include provisions for air quality modeling; and provides for public and local agency participation in planning and emission control rule development. In Ohio's December 5, 2007 and September 4, 2009 infrastructure SIP submissions, Ohio verified that the State fulfills the requirements of Section 110(a)(2) of the Act.

Section 110(a)(2)(D) also requires State plans to prohibit emissions from within the State which contribute significantly to nonattainment or maintenance areas in any other State, or which interfere with

programs under Part C to prevent significant deterioration of air quality or to achieve reasonable progress toward the national visibility goal for Federal class I areas (national parks and wilderness areas). In order to assist States in addressing their obligations regarding regionally transported pollution, U.S. EPA finalized CAIR to reduce SO_2 and NO_x emissions from large electric generating units (EGU). Ohio has met the requirements of the federal CAIR to reduce NO_x and SO_2 emissions contributing to downwind states. On February 1, 2008, U.S. EPA approved Ohio's CAIR program, which can be found in Ohio Administrative Code (OAC) Chapter 3745-109³. On July 6, 2010, U.S. EPA proposed a replacement to the CAIR program, the Transport Rule. [75 FR 45210] Upon finalization, it will further assist States in addressing their obligations regarding regionally transported pollution by providing reductions in NO_x and SO_2 emissions in 2012 and 2014.

ii.) Section 172(c) requirements

This Section contains general requirements for nonattainment plans. The requirements for reasonable further progress, identification of certain emissions increases, and other measures needed for attainment will not apply for redesignations because they only have meaning for areas not attaining the standard. The requirements for an emission inventory will be satisfied by the inventory requirements of the maintenance plan. Chapters Four and Five discuss this requirement in more detail.

iii.) Conformity

The state must work with U.S. EPA to show that its SIP provisions are consistent with the Section 176(c)(4) conformity requirements. The redesignation request should include conformity procedures, if the state already has these procedures in place. If a state does not have conformity procedures in place at the time that it submits a redesignation request, the state must commit to follow U.S. EPA's conformity regulation upon issuance, as applicable.

iv.) Maintenance plans (CAA Section 107(d)(3)(E)(iv))

Section 107(d)(3)(E) stipulates that for an area to be redesignated, U.S. EPA must fully approve a maintenance plan that meets the requirements of Section 175(A). The maintenance plan will constitute a SIP revision and must provide for maintenance of the relevant NAAQS in the area for at least 10 years after redesignation. Section 175 (A) further states that the plan shall contain such additional measures, if any, as may be necessary to ensure such maintenance.

³ http://www.epa.ohio.gov/dapc/regs/regs.aspx#3745-109

In addition, the maintenance plan shall contain such contingency measures as the Administrator deems necessary to ensure prompt correction of any violation of the NAAQS. At a minimum, the contingency measures must include a requirement that the state will implement all measures contained in the nonattainment SIP prior to redesignation.

States seeking redesignation of a nonattainment area should consider the following provisions:

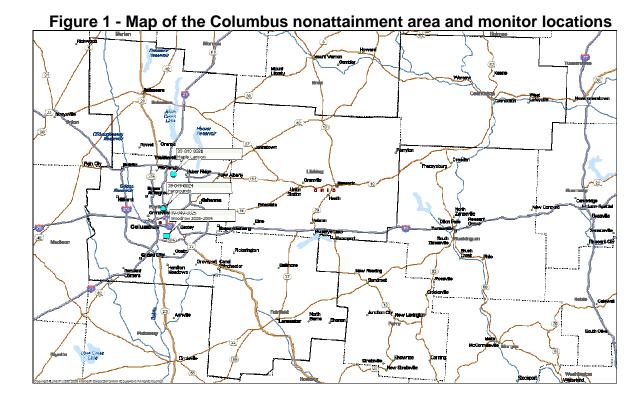
- a.) attainment inventory;
- b.) maintenance demonstration;
- c.) monitoring network;
- d.) verification of continued attainment; and
- e.) contingency plan.

Chapter Six discusses this requirement in more detail.

CHAPTER THREE

PM_{2.5} MONITORING

CAA Section 107(d)(3)(E)(i)


Requirement 1 of 4

A demonstration that the NAAQS for annual PM_{2.5}, as published in 40 CFR 50.7, has been attained.

Background

There are three monitors measuring $PM_{2.5}$ concentrations in this nonattainment area, all of them in Franklin County. These monitors are operated by Ohio EPA Division of Air Pollution Control, Central District Office. A listing of the design values based on the three-year average of the annual mean concentrations from 2008 through 2010 is shown in Table 1. The locations of the monitoring sites for this nonattainment area are shown on Figure 1.

Demonstration

Requirement 2 of 4

Ambient monitoring data quality assured in accordance with 40 CFR 58.10, recorded in the U.S. EPA air quality system (AQS) database, and available for public view.

Demonstration

Ohio EPA has quality assured all data shown in Appendix A in accordance with 40 CFR 58.10 and all other federal requirements. Ohio EPA has recorded the data in the AQS database and, therefore, the data are available to the public.

Requirement 3 of 4

A showing that the three-year average of the annual mean values, based on data from all monitoring sites in the area or its affected downwind environs, are below 15.0 μ g/m³. (This showing must rely on three complete, consecutive calendar years of quality assured data.)

Background

The following information is taken from U.S. EPA's "Guideline on Data Handling Conventions for the PM NAAQS," U.S. EPA-454/R-99-008, April 1999.

In accordance with the CAA Amendments, three complete years of monitoring data are required to demonstrate attainment at a monitoring site. The annual PM2.5 primary and secondary ambient air quality standards are met at an ambient air quality monitoring site when the three-year average of the annual average is less than 15.0 $\mu g/m^3$. While calculating design values, three significant digits must be carried in the computations, with final values rounded to the nearest 0.1 $\mu g/m^3$. Decimals 0.05 or greater are rounded up, and those less than 0.05 are rounded down, so that 15.049 $\mu g/m^3$ is the largest concentration that is less than, or equal to 15.0 $\mu g/m^3$. Values at or below 15.0 $\mu g/m^3$ meet the standard; values equal to or greater than 15.1 $\mu g/m^3$ exceed the standard. An area is in compliance with the annual PM2.5 NAAQS only if every monitoring site in the area meets the NAAQS. An individual site's 3-year average of the annual average concentrations is also called the site's design value. The air quality design value for the area is the highest design value among all sites in the area.

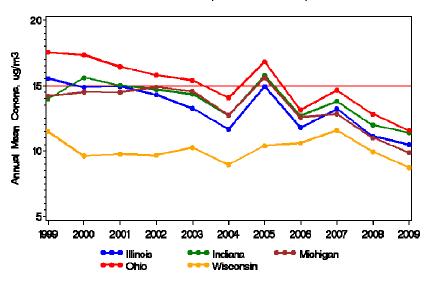
Table 1 shows the monitoring data for 2008 – 2010 that were retrieved from the U.S. EPA AQS. The air quality design value for the area is the highest design value among all sites in the area.

Demonstration

Table 1 - Monitoring Data for the Columbus area for 2008 – 2010

		Annual Standard			
Site	County		Year		
Site County		2008	2009	2010	2008-2010
39-049-0024		12.8	11.5	13.1	12.5
39-049-0025	Franklin	12.4	11.5	12.6	12.2
39-049-0081		11.1	10.8	11.9	11.3

Less than 75% capture in at least one quarter

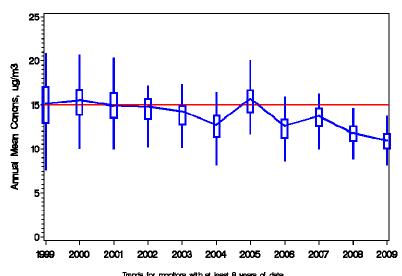

Source: U.S. EPA Air Quality System (AQS); http://www.epa.gov/ttn/airs/airsags/index.htm

The design values calculated for the Columbus area demonstrate that the annual $PM_{2.5}$ NAAQS has been attained. The area's design values have trended downward as emissions have declined due to such factors as cleaner automobiles and fuels, and controls for EGUs, at the national, regional and local level.

National monitoring for PM_{2.5} began in 1999. With respect to each of the Lake Michigan Air Directors Consortium (LADCO) states, there has been a clear downward trend in design values:

Figure 2 - PM_{2.5} Annual Mean Trends LADCO States

PM2.5 Annual Mean Trends, LADCO States, 1999-2009

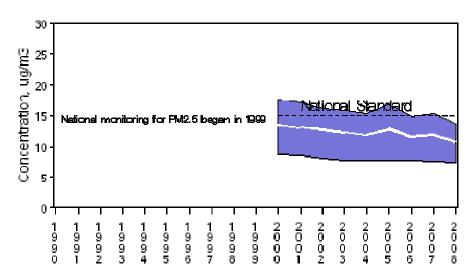


trands for monitors with at east 8 years of data
Source: LADCO; Recent Ozone and PM2.5 Trends – Aug 26 2010.pptx

The same trend can be seen within the Midwest States as a whole:

Figure 3 - PM_{2.5} Annual Mean Trends Midwest States

PM2.5 Annual Mean Trends, Midwest States, 1999-2009


Trends for monitors with at least 8 years of data. Source: LADCO; Recent Ozone and PM25 Trends - Aug 26 2010.pptx

Design values have also trended downward nationally:

Figure 4 - PM_{2.5} Annual Mean National Trends

PM2.5 Air Quality, 2000 - 2008

(Based on Seasonally-Weighted Annual Average)
National Trend based on 728 Sites

2000 to 2008: 19% decrease in National Average

Source: http://www.epa.gov/airtrends/pm.html

Requirement 4 of 4

A commitment that once redesignated, the state will continue to operate an appropriate monitoring network to verify the maintenance of the attainment status.

Demonstration

Ohio EPA commits to continue monitoring $PM_{2.5}$ levels at the Ohio sites indicated in Figure 1 and Table 1. Ohio EPA will consult with U.S. EPA Region 5 prior to making changes to the existing monitoring network, should changes become necessary in the future. Ohio EPA will continue to quality assure the monitoring data to meet the requirements of 40 CFR 58 and all other federal requirements. Connection to a central station and updates to the Ohio EPA web site⁴ will provide real time availability of the data and knowledge of any exceedances. Ohio EPA will enter all data into AQS on a timely basis in accordance with federal guidelines.

⁴ www.epa.ohio.gov/dapc

CHAPTER FOUR

EMISSION INVENTORY

CAA Section 107(d)(3)(E)(iii)

U.S. EPA's redesignation guidance requires the submittal of a comprehensive inventory of $PM_{2.5}$ precursor emissions (primary particles (organic carbon, crustal matter, and elemental carbon), SO_2 and NO_x^5) representative of the year when the area achieves attainment of the annual $PM_{2.5}$ air quality standard. Ohio also must demonstrate that the improvement in air quality between the year that violations occurred and the year that attainment was achieved is based on permanent and enforceable emission reductions. Other emission inventory related requirements include a projection of the emission inventory to a year at least 10 years following redesignation; a demonstration that the projected level of emissions is sufficient to maintain the annual $PM_{2.5}$ standard; and a commitment to provide future updates of the inventory to enable tracking of emission levels during the 10-year maintenance period.

The emissions inventory development and emissions projection discussion below, with the exception of the mobile (on-road) emissions inventory and projections, identifies procedures used by Ohio EPA and the LADCO regarding emissions of all the counties in the Columbus area. All of these inventories and emissions projections were prepared using similar methodologies. Mobile emissions inventories and projections for all counties were prepared by the Mid-Ohio Regional Planning Commission (MORPC) and the Ohio Department of Transportation (ODOT).

Requirement 1 of 5

A comprehensive emission inventory of $PM_{2.5}$, SO_2 and NO_x completed for the base year.

Background

The point source data are taken from Ohio's annual emissions reporting program. The 2005 periodic inventory has been identified as one of the preferred databases for SIP development and coincides with nonattainment air quality in the Columbus area.

Periodic inventories, which include emissions from all sectors - mobile, area, non-road, and point sources - are prepared every three years.

Demonstration

The 2005 inventory is used as the base year for the purpose of this submittal and was submitted to U.S. EPA with Ohio's $PM_{2.5}$ attainment demonstration SIP submitted on July 18, 2008 and revised on June 7, 2010. The detailed

emission inventory information for the Columbus area is provided in Appendix B. Emissions of $PM_{2.5}$, SO_2 and NO_x for 2005 are identified under Requirement Three of this Chapter.

Requirement 2 of 5

A projection of the emission inventory to a year at least 10 years following redesignation.

Background

Ohio EPA prepared a comprehensive inventory for the Columbus area including area, mobile, and point sources for $PM_{2.5}$, SO_2 and NO_x for base year 2005. The 2005 inventory was submitted to U.S. EPA on July 18, 2008 as part of Ohio's $PM_{2.5}$ attainment demonstration SIP for this area. The information below describes the procedures Ohio EPA used to generate the 2005 base year inventory and to develop SIP-ready modeling inventories and future year projections (Pechan Report⁶) based on a 2005 base year inventory. The report by Pechan generated future year estimates of annual emissions for each source sector using accepted growth surrogates. These inventories were provided to the LADCO and have been processed to develop average daily emissions for use in the air quality analyses. These processed modeling inventories have been identified as the correct iteration of the inventory for use in the redesignation. In this document, references to LADCO include the Midwest Regional Planning Organization. Note, the on-road mobile source sector was addressed by specific $PM_{2.5}$ and NO_x modeling as discussed below.

- Area sources were taken from the Ohio 2005 periodic inventory submitted to U.S. EPA. These projections were made from the U.S. Department of Commerce Bureau of Economic Analysis (BEA) growth factors, with some updated local information.
- Mobile source emissions were calculated from MOVES2010 produced emission factors. Only PM_{2.5} and NO_x necessitate emissions inventory analysis. As documented in Ohio EPA's attainment demonstration SIP, Ohio EPA in consultation with U.S. EPA determined mobile sources are insignificant contributors for SO₂. Consistent with Ohio EPA's attainment demonstration, Ohio EPA continues to consider mobile source SO₂ to be an insignificant contributor to fine particles for this nonattainment area. Based on the demonstration below, SO₂ constitutes less than one percent (<1%) of the area's total SO₂ emissions in 2005, 2008, 2015 and 2022 (ranging between 0.28% and 0.76%).

⁶

- Point source information was compiled from Ohio EPA's 2005 annual emissions inventory database and the 2005 U.S. EPA Air Markets acid rain database⁷.
- Biogenic emissions are not included in these summaries.
- Non-road emissions were generated using U.S. EPA's National Mobile Inventory Model (NMIM) 2002 application. To address concerns about the accuracy of some of the categories in U.S. EPA's non-road emissions model, LADCO contracted with two (2) companies to review the base data and make recommendations. One of the contractors also estimated emissions for three (3) non-road categories not included in U.S. EPA's non-road model. Emissions were estimated for aircraft, commercial marine vessels, and railroads. Recreational motorboat population and spatial surrogates (used to assign emissions to each county) were significantly updated. The populations for the construction equipment category were reviewed and updated based upon surveys completed in the Midwest, and the temporal allocation for agricultural sources also was updated.

Demonstration

On-Road Emission Estimations

The Columbus nonattainment area for the on-road emission estimation analysis is divided into a modeled area comprised of Franklin, Delaware, Licking Counties and part of Fairfield County, and into the donut area which includes the remainder of Fairfield County and Franklin Township in Coshocton County. The model coverage area uses the post-processor linklevel procedures to compute the emissions, while the non-modeled donut areas will utilize ODOT's Highway Performance Monitoring Systems (HPMS) county level vehicle miles traveled (VMT) by functional class data (see Appendix C for further details). The travel demand model provides, among other things, daily traffic volumes, congested travel times, speeds, volume to capacity ratios, vehicle miles traveled, and vehicle hours traveled. Areas that are not within the regional travel demand model boundary utilize HPMS based on travel characteristics data. The travel demand model was used in evaluating emissions for Franklin, Delaware, and Licking Counties; both the travel demand model and the HPMS were used in evaluating emissions for Fairfield County, and HPMS alone was used for Franklin Township, Coshocton County, in evaluating emissions.

⁷ http://www.epa.gov/airmarkets/acidrain

Overview

U.S.EPA published a Federal Register notice⁸ of availability on March 2, 2010, to approve MOVES2010 (Motor Vehicle Emissions Simulator), hereafter referred to as MOVES. Upon publication of the Federal Register notice, MOVES became U.S. EPA's approved motor vehicle emission factor model for estimating VOCs, NO_x, CO, PM₁₀ and PM_{2.5} and other pollutants and precursors from cars, trucks, motorcycles, and buses by state and local agencies. MOVES is a computer program designed by the U.S. EPA to estimate air pollution emissions from mobile sources. MOVES replaces U.S. EPA's previous emissions model for on-road mobile sources, MOBILE6.2. MOVES can be used to estimate exhaust and evaporative emissions as well as brake and tire wear emissions from all types of on-road vehicles.

The CAA requires U.S. EPA to regularly update its mobile source emission models. U.S. EPA continuously collects data and measures vehicle emissions to make sure the Agency has the best possible understanding of mobile source emissions. This assessment, in turn, informs the development of U.S. EPA's mobile source emission models. MOVES represents the Agency's most up-to-date assessment of on-road mobile source emissions. MOVES also incorporates several changes to the U.S. EPA's approach to mobile source emission modeling based upon recommendations made to the Agency by the National Academy of Sciences.

U.S.EPA believes that MOVES should be used in ozone, CO, PM, and nitrogen dioxide SIP development as expeditiously as possible. The CAA requires that SIP inventories and control measures be based on the most current information and applicable models that are available when a SIP is developed.

The MOVES more detailed approach (when compared with the previous MOBILE model) to modeling allows U.S. EPA to easily incorporate large amounts of in-use data from a wide variety of sources, such as data from vehicle inspection and maintenance (I/M) programs, remote sensing device (RSD) testing, certification testing, portable emission measurement systems (PEMS), etc. This approach also allows users to incorporate a variety of activity data to better estimate emission differences such as those resulting from changes to vehicle speed and acceleration patterns. MOVES has a graphical user interface which allows users to more easily set up and run the model. MOVES database-centered design provides users much greater flexibility regarding output choices. Unlike earlier models which provided emission factors in grams-per-mile in fixed output formats, MOVES output can be expressed as total mass (in tons, pounds, kilograms, or grams) or as

⁸ http://www.regulations.gov/search/Regs/home.html#documentDetail?R=0900006480ab1f98

emission factors (grams-per-mile and in some cases grams-per-vehicle). Output can be easily aggregated or disaggregated to examine emissions in a range of scales, from national emissions impacts down to the emissions impacts of individual transportation projects. The database-centered design also allows U.S. EPA to update emissions data incorporated in MOVES more easily and will allow users to incorporate a much wider array of activity data to improve estimation of local emissions. For example, the improvements in MOVES will allow project-level PM2.5 emissions to be estimated.

The latest planning assumptions available for the Central Ohio area were used. For the travel demand model, model validation is a joint process between MORPC, LCATS⁹, and the ODOT Office of Technical Services. The model is a multi-step tour-based model. Nonattainment area within regional the model are included (Franklin, Delaware, Licking Counties and part of Fairfield County). Areas outside the regional model are remainder of Fairfield County and Franklin Township in Coshocton County. Forecasted variables such as population, employment, traffic counts, and roadway network, were developed by MORPC in coordination with LCATS and used for the analysis.

Independent variables (land use, socio-economic data, etc.) were developed as well as interpolated for intermediate years of analysis. MORPC continually monitors land use, population and employment information, and performs complete land use inventories every five years. Also, in conjunction with LCATS and ODOT, MORPC continuously updates the model networks to accurately reflect projects in the current Transportation Improvement Plan and Long Range Plan. The model networks developed for this emission estimates were for the analysis years 2005, 2008, 2015, and 2022. The annual emission inventories used by MORPC were developed for the direct $PM_{2.5}$ pollutants, tail pipe, break and tire wear and the precursors of $NO_{\rm x}$ and $SO_{\rm 2}$.

Areas with Regional Model

Customs programs developed by ODOT in conjunction with MPO models were used in computing total emissions. The process uses data on daily and directional traffic distributions as well as more up to date volume /delay functions. The process uses codes able to handle the newer model network formats and MOVES generated emission factors.

The steps in the process involve: 1) the calculation of hourly link volumes based on the percentage of the daily volume, determined by a link's facility and area type, 2) the calculation of emissions for every network link for each hour (this is done using a combination of the MOVES emission factors and

⁹ Licking County Area Transportation Study

the hourly link volumes in the previous step), 3) the calculation of vehicle-based emissions for each source type for each hour of the day, 4) the calculation of intrazonal emissions by combining MOVES generated emissions with estimated intrazonal VMT, and 5) summarizing link, vehicle, and intrazonal emissions for each county, pollutant, and analyzed year, and to multiply annual average daily emissions by 365 to produce an annual estimate.

Areas without Regional Model

The travel demand forecasting model discussed above does not cover the entire nonattainment area. A standard process based on HPMS VMT was employed for the rest of the area which includes portions of Fairfield County and Franklin Township in Coshocton County. This process requires estimating the proportion of county VMT covered and not covered by the model, which is accomplished using a GIS procedure and determining the proportion of the number of vehicles inside and outside of the model. The computed VMT is projected forward based on standard growth rates.

On-Road Mobile Emission Estimations

Tables 2 through 7 contain the results of the emissions analysis for the appropriate years. All emissions estimations are expressed in tons per year (tpy).

Table 2 - Coshocton County, Emissions Estimations for On-Road Mobile Sources

	2005	2008	2015	2022
PM _{2.5} (tpy)	2.63	2.15	1.06	0.58
NO _x (tpy)	66.14	49.71	21.10	8.76
SO ₂ (tpy)	1.31	0.40	0.15	0.15
Annual VMT	21,735,020	21,389,730	22,829,655	23,091,360

Table 3 – Delaware County, Emissions Estimations for On-Road Mobile Sources

	2005	2008	2015	2022
PM _{2.5} (tpy)	151.99	139.75	78.79	53.78
NO _x (tpy)	5,372.30	4,716.95	2,500.97	1,308.18
SO ₂ (tpy)	85.14	29.32	14.35	15.14
Annual VMT	1,583,202,465	1,783,481,615	2,169,135,870	2,542,369,905

Table 4 – Fairfield County, Emissions Estimations for On-Road Mobile Sources

	2005	2008	2015	2022
PM _{2.5} (tpy)	112.09	92.45	47.66	29.22
NO _x (tpy)	3,564.05	2,789.29	1,331.20	624.84
SO ₂ (tpy)	62.25	19.00	8.60	8.34
Annual VMT	1,155,332,310	1,167,404,320	1,313,721,505	1,465,934,900

Table 5 – Franklin County, Emissions Estimations for On-Road Mobile Sources

	2005	2008	2015	2022
PM _{2.5} (tpy)	1,232.19	1,076.57	557.77	355.44
NO _x (tpy)	38,665.96	32,410.28	15,519.51	7,455.60
SO ₂ (tpy)	625.30	204.36	90.42	87.07
Annual VMT	10,874,209,575	11,703,950,570	12,815,874,525	13,709,850,410

Table 6 – Licking County, Emissions Estimations for On-Road Mobile Sources

	2005	2008	2015	2022
PM _{2.5} (tpy)	161.43	140.17	74.25	47.18
NO _x (tpy)	5,722.16	4,859.58	2,439.49	1,200.45
SO ₂ (tpy)	90.22	29.97	13.85	13.75
Annual VMT	1,673,357,830	1,832,011,650	2,102,842,745	2,319,527,550

Table 7 – Emissions Estimations Totals for On-Road Mobile Sources for the Columbus Area

	2005	2008	2015	2022
PM _{2.5} (tpy)	1,660.33	1,451.09	759.53	486.20
NO _x (tpy)	53,390.61	44,825.81	21,812.27	10,597.83
SO ₂ (tpy)	864.22	283.05	127.37	124.45
Annual VMT	15,307,837,200	16,508,237,885	18,424,404,300	20,060,774,125

Motor Vehicle Emission Budget

Table 8 contains the motor vehicle emissions budgets for the Columbus area.

Table 8 - Mobile Vehicle Emissions Budget

	2015 Estimated Emissions	2015 Mobile Safety Margin Allocation	2015 Total Mobile Budget	2022 Estimated Emissions	2022 Mobile Safety Margin Allocation	2022 Total Mobile Budget
PM2.5 (tpy)	759.53	113.93	873.46	486.20	72.93	559.13
NOx (tpy)	21,812.27	3,271.84	25,084.11	10,597.83	1,589.67	12,187.50

^{*}The 15 percent margin of safety was calculated by taking 15 percent of the mobile source emission estimates

The above budgets for the Columbus area, agreed upon as part of the interagency consultation process, include the emission estimates calculated for 2015 and 2022 (from Table 7) with an additional 15 percent margin of safety allocated to $PM_{2.5}$ and NO_x in 2015 and 2022.

In an effort to accommodate future variations in travel demand models and VMT forecast when no change to the network is planned, Ohio EPA consulted with U.S. EPA to determine a reasonable approach to address this variation. Based on this discussion, a 15 percent margin of safety allocation was agreed upon and has been added to the emissions estimates for this nonattainment area.

All methodologies, the latest planning assumptions, and the safety margins allocations were determined through the interagency consultation process described in the Transportation Conformity Memorandum of Understanding (MOU) among MORPC, Ohio DOT, and Ohio EPA.

A 15 percent margin of safety is appropriate because: 1) there is an acknowledged potential variation in VMT forecast and potential estimated mobile source emissions due to expected modifications to TDM and mobile emissions models; and 2) the total decrease in emissions from all sources is sufficient to accommodate this 15 percent allocation of safety margin (as defined in 40 CFR93.101¹⁰) to mobile sources while still continuing to maintain the total emissions in the Columbus area well below the 2008 attainment level of emissions.

The 15 percent margin of safety was calculated by taking 15 percent of the mobile source emission estimates. Safety margin, as defined by the

^{10 &}quot;Safety margin" means the amount by which the total projected emissions from all sources of a given pollutant are less than the total emissions that would satisfy the applicable requirement for reasonable further progress, attainment, or maintenance.

conformity rule, looks at the total emissions from all sources in the nonattainment area. The actual allocation is less than 15 percent of the total emission reduction from all sources as can be seen from Table 44.

In summary, the mobile budget safety margin allocation translates into an additional 113.93 tpy for $PM_{2.5}$ and 3,271.84 tpy for NO_x for 2015 and an additional 72.93 tpy for $PM_{2.5}$ and 1,589.67 tpy for NO_x for 2022.

When compared to the overall safety margin, as defined in 40 CFR 93.101, discussed under "Requirement 3 of 5" below, it is evident this allocation is significantly below the total safety margin for this area.

The current $PM_{2.5}$ and NO_x mobile budgets for the fine particle NAAQS will no longer be applicable either after the effective date of the approved redesignation or after the effective date of any U.S. EPA action approving a finding that the $PM_{2.5}$ and NO_x conformity budgets included in this submittal are adequate for transportation conformity purposes, whichever date comes first.

Finally, it is important to underline that all motor vehicle emission budgets in this Redesignation submittal, which are based on MOVES2010, will <u>replace</u> previous motor vehicle emission budgets on Attainment Demonstration submittals based on MOBILE6.2.

Requirement 3 of 5

A demonstration that the projected level of emissions is sufficient to maintain the PM_{2.5} standard.

Background

In consultation with U.S. EPA, Ohio EPA selected the year 2022 as the maintenance year for this redesignation request. This document contains projected emissions inventories for 2015 and 2022.

Emission projections for the Columbus area were performed using the following approaches:

 As performed by MORPC, mobile source emission projections are based on the U.S. EPA MOVES model. The analysis is described in more detail in Appendix C. All projections were made in accordance with "Procedures for Preparing Emissions Projections" U.S. EPA-45/4-91-019.

- Emissions inventories are required to be projected to future dates to assess the influence growth and future controls will have. LADCO has developed growth and control files for point, area, and non-road categories. These files were used to develop the future-year emissions estimates used in this document. This was done so the inventories used for redesignation are consistent with modeling performed in the future. Appendix D contains LADCO's technical support document detailing the analysis used to project emissions (Base M¹¹).
- For the 2008 attainment year emissions were grown from the 2005 LADCO modeling inventory, using LADCO's growth factors, for all sectors except point sources (electrical generating units and non-electrical generating units). Point source emissions for 2008 were compiled from Ohio EPA's 2008 annual emissions inventory database. The 2015 interim year emissions were estimated based on the 2009 and 2018 LADCO modeling inventory, using LADCO's growth factors, for all sectors. The 2022 maintenance year is based on emissions estimates from the 2018 LADCO modeling.

The detailed inventory information for Columbus area for 2005 is in Appendix B. Emission trends are an important gauge for continued compliance with the PM_{2.5} standard. Therefore, Ohio EPA performed an initial comparison of the inventories for the base year and maintenance years. Mobile source emission inventories are described in Section 5 of Appendix B.

Sectors included in the following tables are: Electrical Generating Unit (EGU-Point); Non-Electrical Generating Unit (Non-EGU); Non-road Mobile (Non-road); Other Area (Other); Marine; Aircraft; Rail (MAR); and On-road Mobile (On-road).

Ohio EPA is identifying emissions projections for 2015 and 2022 for EGUs without the implementation of the CAIR program. U.S. EPA has raised concerns regarding the CAIR program and its remand. As discussed below, with the proposed CAIR replacement, the Transport Rule, Ohio EPA believes additional reductions will be occurring in the future.

On March 10, 2004, the U.S. EPA promulgated the CAIR. Beginning in 2009, U.S. EPA's CAIR rule requires EGUs in 28 eastern states and the District of Columbia to significantly reduce emissions of NO_x and SO_2 . CAIR replaced the NOx SIP Call for EGUs. The intent of the CAIR program is for national NO_x emissions to be cut from 4.5 million tons in 2004, to a cap of 1.5

-

¹¹ http://www.ladco.org/tech/emis/current/index.php

million tons by 2009, and 1.3 million tons in 2018 in 28 states. States were required to submit a CAIR SIP as part of this effort. Ohio submitted a CAIR SIP which was approved by U.S. EPA on February 1, 2007. Revisions to the CAIR SIP were again submitted on July 15, 2009. The revised CAIR SIP was approved as a direct final action on September 25, 2009 (74 FR 48857). As a result of CAIR, U.S. EPA projects that in 2009 emissions of NO $_{x}$ will decrease from a baseline of 264,000 tons per year to 93,000 tons per year while in 2010 emissions of SO $_{z}$ will decrease from a baseline of 1,373,000 tons per year to 298,000 tons per year, within Ohio. And by 2015 U.S. EPA projects emissions of NO $_{x}$ will decrease to 83,000 tons per year while emissions of SO $_{z}$ will decrease to 208,000 tons per year, within Ohio¹².

On December 23, 2008, U.S. EPA's CAIR program was remanded without vacatur by the D.C. Circuit Court. As mentioned above, Ohio EPA has not incorporated these expected CAIR reductions into this redesignation request. It should also be noted that Ohio's SIP-approved NOx SIP Call program and regulations are still in place. Ohio EPA is currently in the process of revising these regulations to provide a "back stop" for the reinstatement of the NOx SIP Call program in the event the CAIR program, or an equivalent, is no longer implemented by U.S. EPA.

As can be seen in Table 9 below, Ohio has seen a significant decline in the 264,000 tons of NO_x and 1,373,000 tons of SO_2 emitted in 2005. In 2008 and 2009 facilities began preparing for and implementing control programs to address CAIR¹³ and consent decrees.

Table 9 - Reductions in SO_2 and NO_x EGU Emissions Between 2008 and 2009

	SO ₂			1		
	2008	2009	Change	2008	2009	Change
Ohio	709,444	601,101	15%	235,018	96,351	59%
LADCO States	2,019,036	1,620,071	20%	702,384	393,930	44%
National	7,616,262	5,747,353	25%	2,996,287	1,990,385	34%

Source: Clean Air Markets Quarterly Emissions Tracking¹⁴

Significant reductions also occurred regionally and nationally as can be seen from the above. Data is also available for the first two quarters of 2010, the year SO_2 reductions are to be implemented under CAIR:

¹² http://www.epa.gov/CAIR/oh.html

¹³ Under CAIR, NOx reductions are to occur beginning in 2009 while SO2 reductions are to occur beginning in 2010.

¹⁴ http://www.epa.gov/airmarkets/quarterlytracking.html

Table 10 – Reductions in SO₂ and NO_x EGU Emissions Between the First Half of 2008 and 2010

	SO ₂			N		
	2008 (1 st half)	2010 (1 st half)	Change	2008 (1 st half)	2010 (1 st half)	Change
Ohio	373,798	279,854	25%	130,598	53,187	59%
LADCO States	1,190,497	854,282	28%	419,114	220,907	47%
National	3,895,472	2,502,965	36%	1,487,179	930,148	37%

Source: Clean Air Markets Quarterly Emissions Tracking 15

The following was reported by U.S. EPA's Clean Markets Division:

"Based on emissions monitoring data, EPA has observed substantial reductions in SO₂ emissions from 2005 to 2009 and in the first two quarters of 2010 as companies installed more controls, electric demand declined, and low natural gas prices made combined-cycle gas-fired units more competitive in several parts of the country. Thus, even after CAIR's vacatur and subsequent remand in late 2008, the controls in place generally have continued to operate, helping to drive continued progress in reducing emissions.¹⁶"

On July 6, 2010, U.S. EPA proposed a replacement to the CAIR program, the Transport Rule. [75 FR 45210] U.S. EPA intends to finalize the Transport Rule in time for reductions to begin in 2012. As proposed, the Transport Rule will preserve those initial reductions achieved under CAIR and provide more reductions in NO_x and SO_2 emissions in 2012 and 2014, ahead of the 2015 CAIR Phase 2.

Ohio EPA is in agreement with the analysis by U.S.EPA that the CAIR program is providing real reductions at this time, Ohio believes these reductions have assisted with PM_{2.5} attainment in this nonattainment area and throughout Ohio. It is also Ohio EPA's belief that the Transport Rule, when finalized, will continue to provide the necessary reductions, and likely even greater reductions, that will be necessary for maintenance of the annual PM_{2.5} standard to occur. As stated by U.S. EPA regarding the proposed Transport Rule, "the results of the air quality modeling indicate that all but one site¹⁷ is projected to be in attainment and only one site¹⁸ is projected to have a maintenance problem for annual PM2.5 in 2014 with the emissions reductions expected from this proposal." [75 FR 45345]. Furthermore, modeling conducted as part of the Transport Rule projects the Counties

¹⁵ http://www.epa.gov/airmarkets/quarterlytracking.html

¹⁶ http://www.epa.gov/airmarkets/background.htm

¹⁷ Alleghenv. PA

¹⁸ Birmingham, AL

within this area will not have maintenance issues in 2012 or 2014 even without the Transport Rule (or CAIR)¹⁹

Maintenance is demonstrated when the future-year (2022) projected emission totals are below the 2008 attainment year totals.

The Ohio emissions data in the tables below are based on the following data sources:

- All On-Road data source: MORPC Transportation Modeling Department and ODOT's Division of Transportation System Development-Modeling and Forecasting Section.
- 2008 EGU and non-EGU: Ohio EPA's 2008 annual emissions inventory database.
- All other data source: Lake Michigan Air Directors Consortium (LADCO).

Demonstration

$PM_{2.5}$

Table 11 - Coshocton County, PM_{2.5} Emission Inventory Totals for Base Year 2005, Estimated 2008, and Projected 2015 and 2022 (tpy) – Without CAIR

Sector	2005 Base	2008 Attainment	2015 Interim	2022 Maintenance	Safety Margin
EGU Point	657.22	656.49	696.46	728.78	-72.29
Non-EGU	93.96	91.06	96.01	99.13	-8.07
Non-road	23.39	19.89	13.17	6.32	13.57
Area	147.96	190.49	206.13	229.63	-39.14
MAR	0.00	0.00	0.00	0.00	0.00
On-road	2.63	2.15	1.06	0.58	1.57
TOTAL	925.16	960.08	1012.83	1064.44	-104.36

¹⁹ See supplemental table "Impacts of the Proposed Transport Rule on Counties with Monitors Projected to have Ozone and/or Fine Particle Air Quality Problems."

Table 12 - Delaware County, PM_{2.5} Emission Inventory Totals for Base Year 2005, Estimated 2008, and Projected 2015 and 2022 (tpy) – Without CAIR

			1	,	
Sector	2005 Base	2008 Attainment	2015 Interim	2022 Maintenance	Safety Margin
EGU Point	0.00	0.00	0.00	0.00	0.00
Non-EGU	0.00	0.00	0.00	0.00	0.00
Non-road	167.23	142.79	94.31	45.03	97.76
Area	156.94	158.37	156.02	154.21	4.16
MAR	25.55	22.06	12.43	2.93	19.13
On-road	151.99	139.75	78.79	53.78	85.97
TOTAL	501.71	462.97	341.55	255.95	207.02

Table 13 - Fairfield County, PM_{2.5} Emission Inventory Totals for Base Year 2005, Estimated 2008, and Projected 2015 and 2022 (tpy) – Without CAIR

Sector	2005 Base	2008 Attainment	2015 Interim	2022 Maintenance	Safety Margin
EGU Point	0.00	0.00	0.00	0.00	0.00
Non-EGU	66.92	59.32	59.41	56.23	3.09
Non-road	99.27	83.48	53.80	23.44	60.04
Area	305.67	304.78	297.53	290.77	14.01
MAR	2.57	2.27	1.41	0.57	1.70
On-road	112.09	92.45	47.66	29.22	63.23
TOTAL	586.52	542.30	459.81	400.23	142.07

Table 14 - Franklin County, PM_{2.5} Emission Inventory Totals for Base Year 2005, Estimated 2008, and Projected 2015 and 2022 (tpy) – Without CAIR

Sector	2005 Base	2008 Attainment	2015 Interim	2022 Maintenance	Safety Margin	
EGU Point	0.00	0.00	0.00	0.00	0.00	
Non-EGU	93.93	152.68	103.13	76.09	76.59	
Non-road	590.43	506.07	352.28	194.45	311.62	
Area	428.69	456.43	466.94	468.41	-11.98	
MAR	52.56	48.51	31.77	15.71	32.80	
On-road	1,232.19	1,076.57	557.77	355.44	721.13	
TOTAL	2,397.80	2,240.26	1,511.89	1,110.10	1,130.16	

Table 15 - Licking County, PM_{2.5} Emission Inventory Totals for Base Year 2005, Estimated 2008, and Projected 2015 and 2022 (tpy) – Without CAIR

Sector	2005 Base	2008 Attainment	2015 Interim	2022 Maintenance	Safety Margin
EGU Point	0.00	0.00	0.00	0.00	0.00
Non-EGU	566.61	594.28	692.98	785.40	-191.12
Non-road	96.74	82.50	54.19	25.42	57.08
Area	513.17	509.99	497.17	484.86	25.13
MAR	0.79	0.75	0.59	0.44	0.31
On-road	161.43	140.17	74.25	47.18	92.99
TOTAL	1,338.74	1,327.69	1,319.18	1,343.30	-15.61

Table 16 – Columbus Area PM_{2.5} Emission Inventory Totals for Base Year 2005, Estimated 2008, and projected 2015 and 2022 (tpy) – Without CAIR

PM2.5	2005 Base	2008 Attainment	2015 Interim	2022 Maintenance	Safety Margin	
Delaware	501.71	462.97	341.55	255.95	207.02	
Fairfield	586.52	542.30	459.81	400.23	142.07	
Franklin	2,397.8 0	2,240.26	1,511.89	1,110.10	1,130.16	
Coshocton	925.16	960.08	1,012.83	1,064.44	-104.36	
Licking	1,338.7 4	1,327.69	1,319.18	1,343.30	-15.61	
COMBINED PM _{2.5} TOTAL	5,749.9 3	5,533.30	4,645.26	4,174.02	1,359.28	

<u>NO</u>_x

Table 17 - Coshocton County, NO_x Emission Inventory Totals for Base Year 2005, Estimated 2008, and Projected 2015 and 2022 (tpy) – Without CAIR

Sector	2005 Base	2008 Attainment	2015 Interim	2022 Maintenance	Safety Margin
EGU Point	21,465.83	20,449.55	9,379.87	3,837.96	16,611.59
Non-EGU	578.94	647.20	592.43	563.46	83.74
Non-road	262.02	225.90	149.78	72.90	153.00
Area	148.92	154.85	157.50	161.19	-6.34
MAR	158.46	161.57	128.74	99.68	61.89
On-road	66.14	49.71	21.10	8.76	40.95

Table 18 - Delaware County, NO_x Emission Inventory Totals for Base Year 2005, Estimated 2008, and Projected 2015 and 2022 (tpy) – Without CAIR

Sector	2005 Base	2008 Attainment	2015 Interim	2022 Maintenance	Safety Margin
EGU Point	0.00	0.00	0.00	0.00	0.00
Non-EGU	13.89	16.98	14.38	12.95	4.03
Non-road	1,875.66	1,619.90	1,016.83	414.35	1,205.55
Area	457.79	462.93	466.26	470.41	-7.48
MAR	815.93	751.99	485.78	230.57	521.42
On-road	5,372.30	4,716.95	2,500.97	1,308.18	3,408.77
TOTAL	8,535.57	7,568.75	4,484.22	2,436.46	5,132.29

Table 19 - Fairfield County, NO_x Emission Inventory Totals for Base Year 2005, Estimated 2008, and Projected 2015 and 2022 (tpy) – Without CAIR

Sector	2005 Base	2008 Attainment	2015 Interim	2022 Maintenance	Safety Margin
EGU Point	0.00	0.00	0.00	0.00	0.00
Non-EGU	1,318.66	1,465.80	1,289.27	1,159.51	306.29
Non-road	1,192.44	1,029.77	646.11	262.83	766.94
Area	329.99	335.35	338.88	343.25	-7.90
MAR	91.25	86.90	60.58	35.77	51.13
On-road	3,564.05	2,789.29	1,331.20	624.84	2,164.45
TOTAL	6,496.39	5,707.11	3,666.04	2,426.20	3,280.91

Table 20 - Franklin County, NO_x Emission Inventory Totals for Base Year 2005, Estimated 2008, and Projected 2015 and 2022 (tpy) – Without CAIR

		,	•		<i>J</i> /
Sector	2005 Base	2008 Attainment	2015 Interim	2022 Maintenance	Safety Margin
EGU Point	0.00	0.00	0.00	0.00	0.00
Non-EGU	842.40	797.78	811.33	835.71	-37.93
Non-road	7,321.50	6,209.36	3,845.20	1,459.36	4,750.00
Area	3,945.51	3,989.72	4,019.37	4,055.92	-66.20
MAR	1,751.39	1,657.67	1,149.43	668.41	989.26
On-road	38,665.96	32,410.28	15,519.51	7,455.60	24,954.68

TOTAL	52,526.76	45,064.81	25,344.84	14,475.00	30,589.81
-------	-----------	-----------	-----------	-----------	-----------

Table 21 - Licking County, NO_x Emission Inventory Totals for Base Year 2005, Estimated 2008, and Projected 2015 and 2022 (tpy) – Without CAIR

Sector	2005 Base	2008 Attainment	2015 Interim	2022 Maintenance	Safety Margin
EGU Point	0.00	0.00	0.00	0.00	0.00
Non-EGU	969.15	996.65	1,071.92	1,217.92	-221.27
Non-road	1,106.27	949.96	602.90	254.19	695.77
Area	584.99	591.47	595.76	601.07	-9.60
MAR	34.77	35.45	28.25	21.87	13.58
On-road	5,722.16	4,859.58	2,439.49	1,200.45	3,659.13
TOTAL	8,417.34	7,433.11	4,738.32	3,295.50	4,137.61

Table 22 - Columbus Area NO_x Emission Inventory Totals for Base Year 2005, Estimated 2008, and Projected 2015 and 2022 (tpy) – Without CAIR

NOx	2005 Base	2008 Attainment	2015 Interim	2022 Maintenance	Safety Margin
Delaware	8,535.57	7,568.75	4,484.22	2,436.46	5,132.29
Fairfield	6,496.39	5,707.11	3,666.04	2,426.20	3,280.91
Franklin	52,526.76	45,064.81	25,344.84	14,475.00	30,589.81
Coshocton	22,680.31	21,688.78	10,429.42	4,743.95	16,944.83
Licking	8,417.34	7,433.11	4,738.32	3,295.50	4,137.61
COMBINED NOx TOTAL	98,656.37	87,462.56	48,662.84	27,377.11	60,085.45

<u>SO₂</u>

Table 23 - Coshocton County, SO₂ Emission Inventory Totals for Base Year 2005, Estimated 2008, and Projected 2015 and 2022 (tpy) – Without CAIR

Sector	2005 Base	2008 Attainment	2015 Interim	2022 Maintenance	Safety Margin	
EGU Point	109,750.80	93,358.73	43,384.63	21,967.16	71,391.57	
Non-EGU	12.45	14.79	12.46	11.06	3.73	
Non-road	25.31	9.34	1.52	0.27	9.07	
Area	30.47	30.59	28.97	27.52	3.07	
MAR	9.97	10.16	8.23	6.53	3.63	
On-road	1.31	0.40	0.15	0.15	0.25	

TOTAL	109,830.31	93,424.01	43,435.96	22,012.69	71,411.32
-------	------------	-----------	-----------	-----------	-----------

Table 24 - Delaware County, SO₂ Emission Inventory Totals for Base Year 2005, Estimated 2008, and Projected 2015 and 2022 (tpy) – Without CAIR

Sector	2005 Base	2008 Attainment	2015 Interim	2022 Maintenance	Safety Margin
EGU Point	0.00	0.00	0.00	0.00	0.00
Non-EGU	0.13	0.22	0.21	0.23	-0.01
Non-road	233.51	85.35	13.21	1.83	83.52
Area	73.14	72.15	69.17	66.25	5.90
MAR	70.99	69.39	54.94	41.51	27.88
On-road	85.14	29.32	14.35	15.14	14.18
TOTAL	462.91	256.43	151.88	124.96	131.47

Table 25 - Fairfield County, SO₂ Emission Inventory Totals for Base Year 2005, Estimated 2008, and Projected 2015 and 2022 (tpy) – Without CAIR

Sector	2005 Base	2008 Attainment	2015 Interim	2022 Maintenance	Safety Margin
EGU Point	0.00	0.00	0.00	0.00	0.00
Non-EGU	212.97	183.31	191.64	195.21	-11.90
Non-road	145.86	53.34	8.21	1.06	52.28
Area	73.56	72.60	69.65	66.76	5.84
MAR	7.14	7.06	5.62	4.30	2.76
On-road	62.25	19.00	8.60	8.34	10.66
TOTAL	501.78	335.31	283.72	275.67	59.64

Table 26 - Franklin County, SO₂ Emission Inventory Totals for Base Year 2005, Estimated 2008, and Projected 2015 and 2022 (tpy) – Without CAIR

Sector	2005 Base	2008 Attainment	2015 Interim	2022 Maintenance	Safety Margin
EGU Point	0.00	0.00	0.00	0.00	0.00
Non-EGU	867.35	569.01	588.78	597.25	-28.24
Non-road	841.63	307.64	48.51	7.94	299.70
Area	302.03	301.68	297.31	293.27	8.41
MAR	141.84	139.56	110.37	83.43	56.13
On-road	625.30	204.36	90.42	87.07	117.29
TOTAL	2,778.15	1,522.25	1,135.39	1,068.96	453.29

Table 27 - Licking County, SO₂ Emission Inventory Totals for Base Year 2005, Estimated 2008, and Projected 2015 and 2022 (tpy) – Without CAIR

Sector	2005 Base	2008 Attainment	2015 Interim	2022 Maintenance	Safety Margin
EGU Point	0.00	0.00	0.00	0.00	0.00
Non-EGU	422.83	427.42	458.60	487.65	-60.23
Non-road	124.74	45.73	7.21	1.12	44.61
Area	87.75	86.66	83.29	80.00	6.66
MAR	2.19	2.23	1.81	1.43	0.80
On-road	90.22	29.97	13.85	13.75	16.22
TOTAL	727.73	592.01	564.76	583.95	8.06

Table 28 - Columbus Area SO₂ Emission Inventory Totals for Base Year 2005, Estimated 2008, and Projected 2015 and 2022 (tpy) – Without CAIR

SO2	2005 Base	2008 Attainment	2015 Interim	2022 Maintenance	Safety Margin
Delaware	462.91	256.43	151.88	124.96	131.47
Fairfield	501.78	335.31	283.72	275.67	59.64
Franklin	2,778.15	1,522.25	1,135.39	1,068.96	453.29
Coshocton	109,830.31	93,424.01	43,435.96	22,012.69	71411.32
Licking	727.73	592.01	564.76	583.95	8.06
COMBINED SO2 TOTAL	114,300.88	96,130.01	45,571.71	24,066.23	72,063.78

PM_{2.5}, NO_x, and SO₂

Table 29 - Columbus Area Comparison of 2008 attainment year and 2015 and 2022 projected emission estimates (tpy)

	2008 Base	2015 Interim	2015 Projected Decrease	2022 Maintenance	2022 Projected Decrease
PM _{2.5}	5,533.30	4,645.26	888.04	4,174.02	1,359.28
NO _x	87,462.56	48,662.84	38,799.72	27,377.11	60,085.45
SO ₂	96,130.01	45,571.71	50,558.30	24,066.23	72,063.78

As shown in the table above (Table 29), $PM_{2.5}$ emissions in the nonattainment area are projected to decrease by 888.04 tpy in 2015 and 1,359.28 tpy in 2022. NO_x emissions in the nonattainment area are projected

to decrease by 38,799.72 tpy in 2015 and 60,085.45 tpy in 2022. SO_2 emissions in the nonattainment area are projected to decline by 50,558.30 tpy in 2015 and 72,063.78 tpy in 2022.

In some cases, area source emissions and, point sources show an increase due to expectations that the population will grow in this area; however, cleaner vehicles and fuels are expected to be in place in 2009 and 2018, and the Transport Rule will be implemented in 2012 and 2014 and these programs should cause an overall drop in all three pollutants emissions. Decreases from U.S. EPA rules covering Tier 2 Motor Vehicle Emissions Standards and Gasoline Sulfur Control Requirements²⁰, Highway Heavy-Duty Engine Rule²¹, and the Non-Road Diesel Engine Rule²² are factored into the changes.

In addition to the above, the Cardinal AEP Station in Coshocton County Two largest coal-fired units (each 600 megawatts) began operating advanced SO_2 controls in late 2007 and early 2008 per a consent decree. The third Cardinal unit (630 megawatts) has plans for advanced SO_2 control to comply with a December 2012 deadline within the same consent decree. The Conesville AEP Station, also in Coshocton County, permanently shut down two coal-fired boilers in 2006 (each 125 megawatts). Conesville also has implemented important changes in 2009 to two 425 megawatt coal-fired units, as required through a consent decree, by continuously operating their existing advanced SO_2 controls and accepting a restricted SO_2 allowable emissions rate that will not cause or contribute to a violation of the NAAQS (the consent decree required their FGD be updated to meet 95% control efficiency by 12/31/2009). The largest coal-fired unit (800 megawatts) at Conesville also started operating advanced NO_x and SO_2 controls in June 2009, as required by their consent decree.

All projections (PM_{2.5}, SO₂, and NOx) do not take into account reductions expected from the CAIR. In many cases, Ohio utilities subject to CAIR have already, or will be installing controls and reducing NOx and SO₂ emissions beyond those projected for EGUs above.

As can be seen from the projected decreases above, even in the absence of consideration of reductions resulting from CAIR, and its future replacement, the Transport Rule, the area will be able to maintain the standard.

Requirement 4 of 5

²⁰ http://www.epa.gov/fedrgstr/EPA-AIR/2000/February/Day-10/a19a.htm

²¹ http://www.epa.gov/fedrgstr/EPA-AIR/1997/October/Day-21/a27494.htm

²² http://www.epa.gov/fedrgstr/EPA-AIR/1998/October/Day-23/a24836.htm

A demonstration that improvement in air quality between the year violations occurred and the year attainment was achieved is based on permanent and enforceable emission reductions and not on temporary adverse economic conditions or unusually favorable meteorology.

Background

Ambient air quality data from all monitoring sites indicate that air quality met the NAAQS for PM_{2.5} in 2008-2010. U.S. EPA's redesignation guidance (p 9) states: "A state may generally demonstrate maintenance of the NAAQS by either showing that future emissions of a pollutant or its precursors will not exceed the level of the attainment inventory, or by modeling to show that the future mix of sources and emissions rates will not cause a violation of the NAAQS."

Demonstration

Permanent and enforceable reductions of $PM_{2.5}$, NO_x , and SO_2 emissions have contributed to the attainment of the annual $PM_{2.5}$ standard. Some of these reductions were due to the application of tighter federal standards on new vehicles. Also Title IV of the CAA, the NO_x SIP Call, CAIR, and federal consent decrees required the reductions of SO_2 and NO_x emissions from utility sources. Reductions achieved are discussed in greater detail under Chapter Five.

Table 30 - Columbus Area Comparison of 2005 base year and 2008 attainment year on-road and EGU reductions

	2005	2008
On-road PM _{2.5}	1,660.33	1,451.09
On-road NO _x	53,390.61	44,825.81
On-road SO ₂	864.22	283.05
EGU PM _{2.5}	657.22	656.49
EGU NO _x	21,465.83	20,449.55
EGU SO ₂	109,750.80	93,358.73

Requirement 5 of 5

Provisions for future annual updates of the inventory to enable tracking of the emission levels, including an annual emission statement from major sources.

Demonstration

In Ohio, major point sources in all counties are required to submit air emissions information annually, in accordance with U.S. EPA's Consolidated Emissions Reporting Rule (CERR). Ohio EPA prepares a new periodic inventory for all PM_{2.5} precursor emission sectors every three years. These PM_{2.5} precursor inventories will be prepared for future years as necessary to comply with the inventory reporting requirements established in the CFR. Emissions information will be compared to the 2005 base year and the 2022

projected maintenance year inventories to assess emission trends, as necessary, and to assure continued compliance with the annual $PM_{2.5}$ standard.

CHAPTER FIVE

CONTROL MEASURES AND REGULATIONS

CAA Section107 (d)(3)(E)(ii), 107(d)(3)(iv), and 107(d)(3)(E)(v)

Requirement 1 of 6

Section 172(c)(1) of the 1990 Clean Air Act Amendments requires states with nonattainment areas to implement RACM and RACT.

Background

Section 172(c)(1) of the 1990 Clean Air Act Amendments requires states with nonattainment areas to submit a SIP providing for implementation of all reasonably available control measures and expeditiously as practicable (including such reductions in emissions from existing sources in the area as may be obtained through the adoption, at a minimum, of reasonable available control technology).

U.S. EPA's Implementation Rule interprets this requirement in great detail. Under U.S. EPA's approach, RACT is determined as part of the broader RACM analysis and identification of all measures (for stationary, mobile, and area sources) that are technically and economically feasible, and that would collectively contribute to advancing the attainment date (i.e., by one year or more). States are required to use a combined approach to RACT and RACM, that (1) identifies potential measures that are reasonable, (2) uses modeling to identify the attainment date that is as expeditious as practicable, and (3) selects the appropriate RACT and RACM.

The Implementation Rule also provides for a presumption that in States that fulfill their CAIR emission reduction requirements, EGU compliance with CAIR is equivalent to RACM/RACT.

<u>Demonstration</u>

In 1972, 1980, and 1991, Ohio promulgated rules requiring reasonably available control measures for particulate emissions from stationary sources.

Statewide RACT rules have been applied to all new sources locating in Ohio since that time. RACT requirements are incorporated into permits along with monitoring, recordkeeping, and reporting necessary to ensure ongoing compliance. Ohio EPA also has an active enforcement program to address violations discovered by field office staff. The Ohio RACT rules are found in OAC Chapter 3745-17²³.

²³ http://www.epa.ohio.gov/dapc/regs/3745_17.aspx

In addition, Ohio EPA promulgated NO_x SIP Call rules (OAC Chapter 3745-14²⁴), CAIR (OAC Chapter 3745-109²⁵), and NO_x Reasonably Available Control Technology rules (OAC Chapter 3745-110²⁶) over the past five years. Emissions from EGUs make up a significant contribution to Ohio's inventory. Beginning in 2009, Ohio implemented CAIR which has, and will, provide for significant reductions in NO_x, PM_{2.5}, and SO₂ until such time it is replaced by U.S. EPA's proposed Transport Rule. Then the Transport Rule will provide for even greater reductions.

As part of a larger initiative, LADCO, in consultation with two contractors, performed a series of studies exploring control measures for reducing both ozone precursors and PM_{2.5} precursors in Ohio, Illinois, Indiana, Michigan, and Wisconsin area. The first consultant, MACTEC, prepared a series of white papers²⁷ researching different stationary source categories. The results were compiled into two reports²⁸. The second consultant, Environ, investigated control options for mobile sources. The results were compiled into two reports²⁹. The stationary and mobile source sectors (and associated control measures) were selected by the LADCO States based on several factors presented in the report (See Chapter 2).

Photochemical modeling was then conducted (as part of LADCO Round 4 modeling) to assess the air quality benefit of the candidate control measures and a modeling report was developed³⁰. Based on the results, the LADCO project team felt it would not be possible to advance the attainment date for PM_{2.5}. Ohio EPA, in its attainment demonstration submitted on July 18, 2008, demonstrated (using a weight of evidence approach) that attainment would be achieved in this area by 2009. Because of a projected 2009 attainment date, it would not have been reasonably possible or practicable for Ohio to develop RACT/RACM requirements, promulgate regulations and implement a control program prior to the projected attainment date.

²⁴ http://www.epa.ohio.gov/dapc/regs/3745 14.aspx

²⁵ http://www.epa.ohio.gov/dapc/regs/3745_109.aspx

²⁶ http://www.epa.ohio.gov/dapc/regs/3745_110.aspx

²⁷ http://www.ladco.org/reports/control/white_papers

http://www.ladco.org/reports/control/final_reports/identification_and_evaluation_of_candidate_control_measures_i_april_2

http://www.ladco.org/reports/control/final_reports/identification_and_evaluation_of_candidate_control_measures_ii_june_2 006.pdf

²⁹ http://www.ladco.org/reports/control/final_reports/final_report_evaluation_of_candidate_mobile_source_control_measures _february_2006.pdf;

http://www.ladco.org/reports/control/final_reports/final_report_evaluation_of_candidate_mobile_source_control_measures _for_ladco_states_in_2009_and_2012_march_2007.pdf 30 http://www.ladco.org/reports/control/modeling/round4_modeling.pdf

Requirement 2 of 6

Section 172(c)(2) of the 1990 CAA Amendments requires attainment demonstration SIPs for nonattainment areas to show reasonable further progress (RFP).

Background

U.S. EPA's Implementation Rule requires RFP only for any area which a State projects an attainment date beyond 2010. The RFP would provide emission reductions showing linear progress between 2002 and 2009. If a State demonstrates attainment will occur by 2010 or earlier, U.S. EPA considers the attainment demonstration to demonstrate achievement of RFP.

Demonstration

In Ohio's attainment demonstration submitted on July 18, 2008, Ohio demonstrated (using a weight of evidence approach) that attainment would be achieved in this area by 2009; and therefore, it was not necessary to submit a separate RFP plan.

Requirement 3 of 6

Section 172(c)(3) requires states to submit a comprehensive inventory of actual emissions.

Background

Section 172(c)(3) requires states to submit a comprehensive inventory of actual emissions in the area, including the requirement for periodic revisions as determined necessary. 40 CFR 51.1008 requires such inventory to be submitted within three years of designation and requires a baseline emission inventory for calendar year 2002 or other suitable year to be used for attainment planning.

Demonstration

The 2005 comprehensive inventory was submitted to U.S. EPA with Ohio's PM_{2.5} attainment demonstration SIP submitted on July 18, 2008. It was then subsequently revised and resubmitted on June 7, 2010.

Ohio also updates its inventory in accordance with U.S. EPA's CERR rule (i.e. emissions statements). Ohio EPA submitted its emissions statement SIP on March 18, 1994 which was approved by U.S. EPA on October 13, 1995 (59 FR 51863). As discussed in Chapter 4 (Requirement 4), Ohio EPA submits, and commits to submit, emission inventories (statements) every three years.

Requirement 4 of 6

Evidence that control measures required in past PM_{2.5} SIP revisions have been fully implemented.

Background

In addition to the historic RACT requirements for PM, the U.S. EPA NO_x SIP Call required 22 states to pass rules that would result in significant emission reductions from large EGUs, industrial boilers, and cement kilns in the eastern United States. Ohio passed this rule in 2001. NOx SIP Call requirements are incorporated into permits along with monitoring, recordkeeping, and reporting necessary to ensure ongoing compliance. Ohio EPA also has an active enforcement program to address violations discovered by field office staff. Compliance is tracked through the Clean Air Markets data monitoring program. Beginning in 2004, this rule accounts for a reduction of approximately 31 percent of all NO_x emissions statewide compared to previous uncontrolled years. The other 21 states also have adopted these rules.

On March 10, 2004, the U.S. EPA promulgated the CAIR. Beginning in 2009, U.S. EPA's CAIR rule requires EGUs in 28 eastern states and the District of Columbia to significantly reduce emissions of NO_x and SO_2 . CAIR replaced the NOx SIP Call for EGUs. National NO_x emissions will be cut from 4.5 million tons in 2004, to a cap of 1.5 million tons by 2009, and 1.3 million tons in 2018 in 28 states. States were required to submit a CAIR SIP as part of this effort. Ohio submitted a CAIR SIP which was approved by U.S. EPA on February 1, 2007. Revisions to the CAIR SIP were again submitted on July 15, 2009. The revised CAIR SIP was approved as a direct final action on September 25, 2009 (74 FR 48857).

Demonstration

Controls for EGUs under the NO_x SIP Call formally commenced May 31, 2004. Emissions covered by this program have been generally trending downward since 1998 with larger reductions occurring in 2002 and 2003. Data taken from the U.S. EPA Clean Air Markets web site, quantify the gradual NO_x reductions that have occurred in Ohio as a result of Title IV of the 1990 CAA Amendments and the beginning of the NO_x SIP Call Rule. Ohio developed the NO_x Budget Trading Program rules in OAC Chapter 3745-14³¹ in response to the SIP Call. OAC Chapter 3745-14 regulates EGUs and certain non-EGUs under a cap and trade program based on an 85 percent reduction of NO_x emissions from non-EGUs, compared to historical levels. This cap was in place through 2008, at which time the CAIR program superseded it as

³¹ http://www.epa.ohio.gov/dapc/regs/3745_14.aspx

discussed above. Requirement 3 of 5 under Chapter 4 above discussed the reductions Ohio has seen as a result of CAIR.

On April 21, 2004, U.S. EPA published Phase II of the NO_x SIP Call that establishes a budget for large (greater than 1 ton per day emissions) stationary internal combustion engines. Ohio EPA's OAC rule 3745-14-12 addresses stationary internal combustion engines, all used in natural gas pipeline transmissions. U.S. EPA approved this revision to the SIP on April 4, 2008. An 82 percent NO_x reduction from 1995 levels is anticipated. Completion of the compliance plan occurred by May 1, 2006, and the compliance demonstration began May 1, 2007.

Tier II Emission Standards for Vehicles and Gasoline Sulfur Standards

In February 2000, U.S. EPA finalized a federal rule to significantly reduce emissions from cars and light trucks, including sport utility vehicles (SUVs). Under this proposal, automakers will be required to sell cleaner cars, and refineries will be required to make cleaner, lower sulfur gasoline. This rule will apply nationwide. The federal rules will phase in between 2004 and 2009. U.S. EPA has estimated that NO_x emission reductions will be approximately 77 percent for passenger cars, 86 percent for smaller SUVs, light trucks, and minivans, and 65 to 95 percent reductions for larger SUVs, vans, and heavier trucks. The sulfur content of gasoline is estimated to be reduced by up to 90 percent. VOC emission reductions will be approximately 12 percent for passenger cars, 18 percent for smaller SUVs, light trucks, and minivans, and 15 percent for larger SUVs, vans, and heavier trucks.

Heavy-Duty Diesel Engines

In July 2000, U.S. EPA issued a final rule for Highway Heavy Duty Engines, a program which includes low-sulfur diesel fuel standards, which will be phased in from 2004 through 2007. This rule applies to heavy-duty gasoline and diesel trucks and buses. This rule will result in a 40 percent reduction in NO_x from diesel trucks and buses, a large sector of the mobile sources NO_x inventory. It also estimated the level of sulfur in highway diesel fuel will be reduced by 97 percent by mid-2006.

Clean Air Non-road Diesel Rule

In May 2004, U.S. EPA issued the Clean Air Non-road Diesel Rule. This rule applies to diesel engines used in industries such as construction, agriculture, and mining. It also contains a cleaner fuel standard similar to the highway diesel program. The new standards will cut emissions from non-road diesel engines by more than 90 percent. Non-road diesel equipment, as described in this rule, currently accounts for 47 percent of diesel particulate matter (PM) and 25 percent of NO_x from mobile sources nationwide. Sulfur levels will be reduced in non-road diesel fuel by 99 percent from current levels, from

approximately 3,000 parts per million (ppm) now to 15 ppm in 2009. New engine standards take effect, based on engine horsepower, starting in 2008. Together, these rules will substantially reduce local and regional sources of $PM_{2.5}$ precursors.

Requirement 5 of 6

Acceptable provisions to provide for new source review.

Background

Ohio has a longstanding and fully implemented New Source Review (NSR) program. This is addressed in OAC Chapter 3745-31³². The Chapter includes provisions for the Prevention of Significant Deterioration (PSD) permitting program in OAC rules 3745-31-01 to 3745-31-20. Ohio's PSD program was conditionally approved on October 10, 2001 (66 FR 51570) and received final approval on January 22, 2003 (68FR 2909) by U.S. EPA as part of the SIP.

Demonstration

Any facility that is not listed in the 2005 emission inventory, or for the closing of which credit was taken in demonstrating attainment, will not be allowed to construct, reopen, modify, or reconstruct without meeting all applicable NSR requirements. Once the area is redesignated, Ohio EPA will implement NSR through the PSD program.

Requirement 6 of 6

Assure that all existing control measures will remain in effect after redesignation unless the State demonstrates through modeling that the standard can be maintained without one or more control measures.

<u>Demonstration</u>

Ohio commits to maintaining the aforementioned control measures after redesignation. Ohio hereby commits that any changes to its rules or emission limits applicable to $PM_{2.5}$, SO_2 , and NO_x as required for maintenance of the annual $PM_{2.5}$ standard in the Columbus area, will be submitted to U.S. EPA for approval as a SIP revision.

Ohio, through Ohio EPA's Legal section, has the legal authority and necessary resources to actively enforce any violations of its rules or permit provisions. After redesignation, it intends to continue enforcing all rules that relate to the emission of $PM_{2.5}$ precursors in the Columbus area.

³² http://www.epa.ohio.gov/dapc/regs/3745_31.aspx

CHAPTER SIX

CONTINGENCY MEASURES

CAA Section 107(d)(3)(E)(v)

Requirement 1 of 4

A commitment to submit a revised plan eight years after redesignation.

Demonstration

Ohio hereby commits to review its maintenance plan eight years after redesignation, as required by Section 175(A) of the CAA.

Requirement 2 of 4

A commitment to expeditiously enact and implement additional contingency control measures in response to exceeding specified predetermined levels (triggers) or in the event that future violations of the ambient standard occur.

Demonstration

Ohio hereby commits to adopt and expeditiously implement necessary corrective actions in the following circumstances:

Warning Level Response:

A warning level response shall be prompted whenever the $PM_{2.5}$ average of the weighted annual mean of 15.5 μ g/m³ occurs in a single calendar year within the maintenance area. A warning level response will consist of a study to determine whether the $PM_{2.5}$ value indicates a trend toward higher $PM_{2.5}$ values or whether emissions appear to be increasing. The study will evaluate whether the trend, if any, is likely to continue and, if so, the control measures necessary to reverse the trend taking into consideration ease and timing for implementation as well as economic and social considerations. Implementation of necessary controls in response to a warning level response trigger will take place as expeditiously as possible, but in no event later than 12 months from the conclusion of the most recent calendar year.

Should it be determined through the warning level study that action is necessary to reverse the noted trend, the procedures for control selection and implementation outlined under "action level response" shall be followed.

Action Level Response:

An action level response shall be prompted whenever a two-year average of the weighted annual means of 15.0 $\mu g/m^3$ or greater occurs within the maintenance area. A violation of the standard (three-year average of the weighted annual means of 15.0 $\mu g/m^3$ or greater) shall also prompt an action level response. In the event that the action level is triggered and is not found

to be due to an exceptional event, malfunction, or noncompliance with a permit condition or rule requirement, Ohio EPA in conjunction with the metropolitan planning organization or regional council of governments, will determine additional control measures needed to assure future attainment of the NAAQS for annual PM_{2.5}. In this case, measures that can be implemented in a short time will be selected in order to be in place within 18 months from the close of the calendar year that prompted the action level. Ohio EPA will also consider the timing of an action level trigger and determine if additional, significant new regulations not currently included as part of the maintenance provisions will be implemented in a timely manner and will constitute our response.

Control Measure Selection and Implementation

Adoption of any additional control measures is subject to the necessary administrative and legal process. This process will include publication of notices, an opportunity for public hearing, and other measures required by Ohio law for rulemaking.

If a new measure/control is already promulgated and scheduled to be implemented at the federal or State level, and that measure/control is determined to be sufficient to address the upward trend in air quality, additional local measures may be unnecessary. Furthermore, Ohio will submit to U.S. EPA an analysis to demonstrate the proposed measures are adequate to return the area to attainment.

Requirement 3 of 4

A list of potential contingency measures that would be implemented in such an event.

Demonstration

Contingency measures to be considered will be selected from a comprehensive list of measures deemed appropriate and effective at the time the selection is made. The selection of measures will be based on cost-effectiveness, emission reduction potential, economic and social considerations or other factors that Ohio EPA deems appropriate. Ohio EPA will solicit input from all interested and affected persons in the maintenance area prior to selecting appropriate contingency measures. Because it is not possible at this time to determine what control measures will be appropriate at an unspecified time in the future, the list of contingency measures outlined below is not exhaustive.

- 1) Diesel reduction emission strategies.
- 2) Alternative fuel (e.g., liquid propane and compressed natural gas) and diesel retrofit programs for fleet vehicle operations.

- 3) Tighter PM_{2.5}, SO₂, and NO_x emissions offsets for new and modified major sources.
- 4) Impact crushers located at recycle scrap yards upgrade wet suppression.
- 5) Concrete manufacturing upgrade wet suppression.
- 6) Additional NO_x RACT statewide.

No contingency measure shall be implemented without providing the opportunity for full public participation during which the relative costs and benefits of individual measures, at the time they are under consideration, can be fully evaluated.

Requirement 4 of 4

A list of $PM_{2.5}$, SO_2 , and NO_x sources potentially subject to future additional control requirements.

Demonstration

The following is a list of $PM_{2.5}$, SO_2 , and NO_x sources potentially subject to future controls.

- ICI Boilers SO₂ and NO_x controls;
- EGUs;
- process heaters;
- internal combustion engines;
- combustion turbines;
- other sources greater than 100 tons per year;
- fleet vehicles;
- concrete manufacturers;
- · aggregate processing plants;

CHAPTER SEVEN

PUBLIC PARTICIPATION

Ohio published notification for a public hearing and solicitation for public comment concerning the draft redesignation petition and maintenance plan in the widely distributed county publications on March 14, 2011.

The public hearing to receive comments on the redesignation request was held on April 21, 2011, at the Ohio EPA's Central Office, Columbus, Ohio. The public comment period closed on April 21, 2011. Appendix E includes a copy of the public notice, certification of publication, and the transcript from the public hearing.

CHAPTER EIGHT

CONCLUSIONS

The Columbus area annual $PM_{2.5}$ nonattainment area has attained the 1997 annual NAAQS for $PM_{2.5}$ and complied with the applicable provisions of the 1990 Amendments to the CAA regarding redesignations of $PM_{2.5}$ nonattainment areas. Documentation to that effect is contained herein. Ohio EPA has prepared a redesignation request and maintenance plan that meet the requirements of Section 110 (a)(1) of the 1990 CAA.

Based on this presentation, the Columbus area annual $PM_{2.5}$ nonattainment area meets the requirements for redesignation under the CAA and U.S. EPA guidance. Ohio has performed an analysis that shows the air quality improvements are due to permanent and enforceable measures. Furthermore, because this area is subject to significant transport of pollutants, significant regional SO_2 and NO_x reductions will ensure continued compliance (maintenance) with the standard with an increasing margin of safety.

The State of Ohio hereby requests that the Columbus area annual PM_{2.5} nonattainment area be redesignated to attainment simultaneously with U.S. EPA approval of the maintenance plan provisions contained herein.

This page left intentionally blank