Conodonts: The Backbone of the Paleozoic Timescale Christopher Waid | Ohio Geological Survey

Conodont Paleontology

Conodonts are the microscopic remains of the feeding apparatus for a clade of marine organisms that existed from the middle Cambrian through Middle Triassic. The only part of the animal that was mineralized were its teeth (Fig. 1) as the rest of the organism was soft bodied. The teeth are usually the only part of the animal that can be recovered in the fossil record. Therefore, the term "conodont" technically refers to just the teeth, and "conodont animal" is used to refer to the organism that the teeth came from. A few exceptionally well-preserved impressions of the entire conodont animal have been found, so we now know that they were eel-shaped organisms (Fig. 2). The feeding apparatus of each conodont animal contained conodonts of several different shapes, just like humans have variously shaped teeth. Wellpreserved assemblages of conodonts on shale bedding planes allow the reconstruction of the position of each type of conodont within the organism (Fig. 3). The evolutionary relationship of conodonts to other clades was a major paleontological controversy until the discovery of the soft-body impressions. The impressions preserve eyes, myomere muscle structures, and a notochord. These are key characteristics of Phylum Chordata (bilaterally symmetrical animals with a centralized nervous system). Some conodont researchers argue that conodonts should be included within the vertebrate clade (Fig. 4) because the mineralization of the conodont is similar to the way the vertebrates mineralize teeth or bones.

Figure 1: Conodont specimens on the head of a pin. Photo taken with a scanning electron microscope (Purnell et al., 1995).

Figure 2: An interpretation of what the conodont animal may Figure 3: Illustration showing the position of each have looked like. The tail fins, large, forward-facing eyes, and type of conodont within the organism. M and S hydrodynamic shape of the organisms indicates that they had a elements were used for grasping food. P elements nektic (swimming) lifestyle, and may have been predators. were used for grinding and crushing food. Modi-Drawing from paleoartist Nikolay Zverkov.

fied from Goudemand et al., 2011.

Conodonts are one of the primary fossils used for the construction of the geological time scale from the Ordovician through Triassic systems. The relative durability, high abundance, and fast evolutionary rates of conodonts allow for very precise biozonation schemes, some with an estimated precision of < 1 Myr. The integration of conodont and chemostratigraphic data allows highly precise correlations of numerical age numerical timescale. The figure above shows examples of conodonts from each geologic period. Timescale: ICS, version 2014.

Conodonts in Earth-History Research

eries/ poch		Stage/Age	Age Ma	GSSP
(Martin Control		Ladinian	237.0 -	A
iddle		Anisian	241.5	0
		Olenekian	246.8	
ower		Induan	249.8	0
		Chanabeingian	251.9	P
ingian		Whether	254.2	P
uada- ipian		vvucniapingian	259.8	P
		Capitanian	265.1	S
		Wordian	268.8	P
		Roadian	272.3	A
uralian		Kungurian	282.0	1
		Artinskian	200.1	
		Sakmarian	200.1	
		Asselian	295.0	A
1		Gzhelian	298.9	0
	Upper	Kasimovian	303.4	
		Moscovian	306.7	
	Louise	Bachkirian	314.6	0
	Lower	Comultarian	323.2	P
	Upper	Serpuknovian	330.9	
	Middle	Visean	346.7	S
	Lower	Tournaisian	358.9	S
pper		Famennian	372.2	D
iddle		Frasnian	392.7	A
		Givetian	302.7	A
		Eifelian	387.7	A
ower		Emsian	393.3	5
		Pragian	407.6	~
		Lochkouian	410.8	P
	int at 1	LOGINOVIAIT	419.2	P
nuoli		Ludfording	423.0	P
wolbu		Ludiordian	425.6	P
		Gorstian	427.4	P
enlock		Homerian	430.5	P
		Sheinwoodian	433.4	P
ndovery		Telychian	438.5	D
		Aeronian	440.8	A
		Rhuddanian	440.0	A
pper		Hirnantian	443.8	A
		Katian	445.2	A
		Sandhian	453.0	5
iddle		Darriwilian	458.4	~
		Daningian	467.3	P
		Eleier	470.0	P
ower		Fiolan	477.7	P
		Tremadocian	485.4	P
		Stage 10	489.5	ess II
ongian		Jiangshanian	494	S
		Paibian	497	D
		Guzhangian	500 F	A
ries 3		Drumian	500.5	A
		Stage 5	504.5	
		Stage 4	509	
ries 2		Stage 3	514	
		Stage 2	~ 520	
erre- uvian		Forducion	~ 530	0
		Fortunian	541.0	P

Ocean Paleochemistry

Conodonts are also used for studying the geochemistry of past ocean water. They are made of biogenic apatite – the same mineral as vertebrate bones and teeth. During life, conodonts grew by laminar deposition of hydroxylapatite $(Ca_{10}(PO_4)_6(OH)_2)$, which re-crystalized to fluorapatite $(Ca_{10}$ $(PO_4)_6(F)_2$) shortly after death. Most of the crystal structure is not affected by remineralization, allowing conodonts to record the chemical composition of past oceans. The chemical composition of oceans is linked to atmospheric and tectonic processes, so the chemical make up of ocean water can help researchers reconstruct tectonic events and the climate of the past.

Strontium is present in low concentrations in sea water, and occasionally replaces the calcium ion in apatite. The ratio of ⁸⁷Sr to ⁸⁶Sr in the oceans is heavily dependent on the rate of continental weathering and sea-floorspreading. This relationship can help researchers determine the timing of continental collisions. For example, after the initial formation of Pangea during the Carboniferous, the ratio decreased as continental weathering rates decreased (see above; from Hu et al., 2015).

The ratio of ¹⁸O to ¹⁶O of past sea-water be measured from the PO₄ ion in the fluorapatite of conodonts. This ratio is dependent on the temperature of the oceans and the volume of ice present on the Earth. During cold times, the oxygen isotopic value of the ocean gets heavier, and vice-versa data onto the relative timescale, thereby increasing the accuracy of the during warm times. This relationship is used to determine the timing of p. 737-76 icehouse and greenhouse climate conditions (see above; from Veizer et al. rdman, D. 2013. Midcontinent Pennsylvanian conodont zonation. Stratigraphy, v. 10, p. 55-72. ⁶ ICOS, Subcommission on Permian Stratigraphy website. http://permian.stratigraphy.org 1999). ⁷ Orchard, M. 2010. Triassic conodonts and their role in stage boundary definition. Geological Society, London, SP 334, p. 139-161.

Conodonts permanently change color when subjected to increased temperatures. Laboratory experiments have correlated the color changes with temperature changes (see top image, from Königshof, 2003), which allows for the creation of basin thermal maturity maps (see bottom image, Patchen et al., 2006). Thermal maturity information is important in the oil and gas industry, because it aids in predicting where conditions were right for oil or gas creation from source rocks.

References

N., Orchard, M., Urdy, S., Bucher, H., Tafforeau, P. 2011. Synchrotron-aided reconstruction of the conodont feeding apparatus and ates. PNAS, v. 108, p. 8720-8724. Hu, Z., Li, Y., Li, B., Huang, S., Han, X. 2015. A Review of the strontium isotopic composition of Phanerozoic seawater. Advances in Earth Science, v. 30, Königshof, P. 2003. Deformationsstrukturen und texturelle Veranderung Palaozoischer Conodonten: Beispiele aus Deutschland und Frankreich. thers. 2006. A geologic play book for Tranton-Black River Appalachian Basin Exploration. ratigraphy of the middle Cambrian through lowermost Ordovician in Hunan, South China