

SURFICIAL GEOLOGY OF THE BIRMINGHAM QUADRANGLE, OHIO

by
T. Andrew Nash
with cartography by Dean R. Martin

Digital Map Series SG-4A
Birmingham
08/2019

MAPPING CONVENTIONS

This map provides a three-dimensional framework of the study area's surficial geology and depicts four important aspects of surficial geology:

1. Geologic deposits, indicated by letters that represent the major lithologies.
2. Thicknesses of the individual deposits, indicated by numbers and modifiers.
3. Lateral boundaries of the deposits, indicated by map-unit area boundaries (solid and dashed lines).
4. Vertical sequence of deposits, by the stack of symbols within each map-unit area.

Letters represent geologic deposits (lithologic units) and are described in detail below. Lithologic units may be a single lithology, such as sand (S) or clay (C), or a combination of related lithologies such as sand and gravel (SG) or sand and silt (SL). Letters with a dash and a modifier (e.g., LC-1) represent a lithologic unit with a thin, discontinuous distribution and is missing in portions of that map-unit area. For example, (72) indicates that till with a thickness of 20 ft is present in that area.

Numbers (without modifiers) that follow the lithology designators represent the average thickness of a lithologic unit in tens of feet (for example, 3 represents 30 feet [ft]). If no number is present, the average thickness is implied as 1 (10 ft). These unmodified numbers correspond to a thickness range centered on the specified value but may vary ±50 percent. For example, 74 indicates an average thickness of 40 ft in a map-unit area, but that thickness may vary from 20 to 60 ft.

Modifiers provide additional thickness and distribution information:

1. Geologic characteristics, such as range of textures, bedding and age.
2. Engineering properties or concerns attributed to the unit.
3. Depositional environment.
4. Age, if applicable, or geographic locations.
5. Geographic locations within the map area, if pertinent.

Numbers (without modifiers) that follow the lithology designators represent the average thickness of a lithologic unit in tens of feet (for example, 3 represents 30 feet [ft]). If no number is present, the average thickness is implied as 1 (10 ft). These unmodified numbers correspond to a thickness range centered on the specified value but may vary ±50 percent. For example, 74 indicates an average thickness of 40 ft in a map-unit area, but that thickness may vary from 20 to 60 ft.

The small scale of this reconnaissance map generalizes the great local variability within surficial deposits. That variability is explained in the local literature. Some map-unit areas are too small to delineate the 1:24,000 scale and have been included in adjacent areas. This map should serve only as a regional predictive guide to the area's surficial geology and not as a replacement for subsurface borings and geophysical studies required for site-specific characterizations.

UNIT DESCRIPTIONS*

w Water. Lakes generally larger than 20 acres and not appearing on the base map.

x Quarry. Floored in bedrock; may contain reclaimed areas. Includes strip-mine benches.

a Alluvium (Holocene). Includes a wide variety of textures from silt to clay to boulders. Commonly near the surface. Includes organic material, normally not compacted. Found in floodplains of modern streams and mapped on the base map. May be derived from bedrock or overwash. Also includes alluvial terraces; old floodplain remnants that are positioned tens of feet above modern floodplains.

LC Silt and clay with occasional sand and gravel interbeds (unspecified age). Present as deltaic deposits, outwash, deposits in upland depressions, and slackwater lake deposits.

Lk Silt and clay: Minford Silt (Pro-Illinoian). Present on high terraces or as eroded remnants of lacustrine clays and silts, finely laminated, often covered with loess and/or colluvium, sometimes underlain by sand and gravel.

P Sandstone, siltstone, shale, clay, limestone, and coal (Pennsylvanian). Commonly massive and coarse grained with abundant rounded quartz-pebbles; quartz-pebble conglomerate present. Interbeds of shale, sandstone, siltstone, clay, coal, and limestone common in upper portions of unit. Common horizontal and vertical changes in rock type. Stratigraphic names: Pottsville, Allegheny, and Conemaugh Groups undivided.

■ Soil boring data collection locality.

— Boundary between map-unit areas having different uppermost continuous lithologies or significant bedrock lithology change; underlying lithologies may or may not differ.

..... Boundary between map-unit areas having the same uppermost continuous lithology but different thicknesses or different underlying lithologies.

Note: Boundary types reflect the relationships among uppermost continuous lithologies only, not patchy, discontinuous lithologies (in parentheses).

*The colors on the map correspond to the uppermost continuous map units and serve to assist in visualizing the geology of the area. Discontinuous units (in parentheses) and subsurface-only units are not assigned colors.

DATA SOURCES

Data were collected from numerous sources (see "References"). The collection of data was greatest near the surface, as indicated with depth contours. Depth contours were used to describe the top 5 ft of surficial material; provided an initial guide to map-unit areas. These areas were modified through interpretation of local geomorphic settings and other data that indicated changes of deposits at depth, including water-well logs from the Ohio Department of Natural Resources, Division of Water Resources; test-boring logs provided by the Ohio Department of Transportation, Office of Geotechnical Engineering Geotechnical Document Management system, available online at <https://gisdot.state.oh.us/tms> and at Ohio Department of Natural Resources, Division of Water Resources; and published or unpublishe geologic reports, maps, and field notes (on file at the ODNR Division of Geological Survey). These data also provided the basis for lithologic unit descriptions that summarize, as accurately as possible, recognized associations of geologic features and characteristics of the deposit. The deposit was calculated using ODNR Division of Geological Survey open-file bedrock topography maps and bedrock units were summarized from ODNR Division of Geological Survey bedrock geologic maps, all of which were used for the delineation of quadrangle map-unit areas. Land-surface topography was derived from Light Detection and Ranging (LiDAR) data, collected as part of the Ohio Statewide Imagery Program, and then converted into a 12.5 x 12.5-ft-resolution digital elevation model (DEM) as a shaded relief model by the Ohio PA. The Ohio Statewide LiDAR Program collected LiDAR data and converted it into a 2.5 x 2.5-ft-resolution DEM. Using this DEM, the ODNR Division of Geological Survey generated a shaded relief model and a percent slope.

Location of Birmingham 1:24,000 quadrangle in Ohio.

Basemap derived from various State of Ohio datasets
Projection is Ohio coordinate system, south zone
North American Datum 1983

This geologic map was funded in part by the USGS Great Lakes Geologic Mapping Coalition under cooperative agreement number G18AC00212.

REFERENCES

ODNR Division of Geological Survey, 1998. Physiographic regions of Ohio: Ohio Department of Natural Resources, Division of Geological Survey, page-size map with text, 2 p., scale 1:210,000,000.
Pawley, R.R., Goldthwait, R.P., Brockman, C.S., Hull, D.N., Swinford, E.M., and Van Horn, R.G., 1999. Quaternary geology of Ohio: Ohio Department of Natural Resources, Division of Geological Survey Map 2, scale 1:500,000.
Pawley, R.R., Goldthwait, R.P., and Brockman, C.S., 2004. Shaded-drift thickness of Ohio: Ohio Department of Natural Resources, Division of Geological Survey Map SG-3, scale 1:500,000.
Rubel, N., Glavine, J., Griffin, R., 2004. Soil Survey of Guernsey County, Ohio. U.S. Department of Agriculture, Natural Resources Conservation Service Soil Survey Geographic (SSURGO) Database, Soil Survey Division, National Soil Survey Center, Soil Survey Development Center, The Ohio State University Extension, and the Guernsey County Commissioners, 434 p.
Slucher, E.R., Swinford, E.M., Larsen, G.E., Schumacher, G.A., Shrike, D.L., Rice, C.L., Caudill, M.R., Rea, R.G., Powers, D.M., 2006. Bedrock geologic map of the Ohio portion of the Great Lakes region: Ohio Department of Natural Resources, Division of Lands and Soil, and the Ohio Department of Agriculture Research and Development Center, 186 p.
Waters, D.D., and Roth, L.E., 1986. Soil Survey of Tuscarawas County, Ohio: U.S. Department of Agriculture, Soil Conservation Service, Ohio Department of Natural Resources, Division of Lands and Soil, and the Ohio Department of Agriculture Research and Development Center, 186 p.

1	2	3
4	5	6
7	8	9

1 Newcomerstown
2 Gnadenhutten
3 Tippecanoe
4 Kimbolton
5 **Birmingham**
6 Freeport
7 Cambridge
8 Old Washington
9 Antrim

Adjacent 7.5-minute quadrangles

The products of the Ohio Department of Natural Resources (ODNR), Division of Geological Survey, including digital maps and printed maps and any other associated documents, are intended to provide general geologic information only and should not be used for any other purpose. They are not intended for resale or to replace site-specific investigations. These data were compiled by the ODNR Division of Geological Survey and are not to be construed as subsurface geological material. If these data are used in the compilation of other data sets or maps for distribution or publication, this source must be referenced.
Recommended Bibliographic Citation for this Map:
Nash, T.A., 2019. Surficial geology of the Birmingham 7.5-minute quadrangle, Ohio. Columbus: Ohio Department of Natural Resources, Division of Geological Survey Map SG-4A, scale 1:24,000.

Neither the Ohio Department of Natural Resources, nor any agency thereof, nor any of their employees, contractors, or subcontractors, make any warranty, express or implied, nor assume any legal liability or responsibility for the accuracy, completeness, or usefulness of this product. Any use thereof for a purpose other than for which said information or product was intended shall be solely at the risk of the user.
www.OhioGeology.com

